Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Алейник Старитин ОТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Должность: Ректор

Дата подписания: 16.02.2021 11:10:04
Уникальный программ РЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬ-5258223550ea9f**но**Е2**мчрежидение высшего образования «БЕЛГОРОДСКИЙ ГОСУ**-

ДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ имени В.Я.ГОРИНА»

УТВЕРЖДАЮ

Декан инженерного факультета

С.В.Стребков

2020г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Компьютерное проектирование

наименование дисциплины (модуля)

Направление подготовки: 35.03.06 - Агроинженерия

шифр, наименование

Направленность (профиль): Технические системы в агробизнесе

Квалификация: бакалавр

Год начала подготовки: 2020

- федерального государственного образовательного стандарта высшего образования по направлению подготовки 35.03.06 Агроинженерия, утвержденного приказом Министерства образования и науки РФ от 23.08.2017 г. №813;
- порядка организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры, утвержденного приказом Министерства образования и науки РФ от 05.04.2017 г., № 301;
- профессионального стандарта 13.001 «Специалист в области механизации сельского хозяйства», утвержденного Министерством труда и социальной защиты РФ от 21 мая 2014 г. №340н;

Составитель: канд.техн.наук, доцент Слободюк А.П.

Рассмотрена на заседании кафедры технической механики и конструирова-
ния машин
«25» об 2020 г., протокол № 12 — 19/2»
Зав.кафедрой Пастухов А.Г.
Согласована с выпускающей кафедрой машин и оборудования в агробизнесе
« <u>18</u> » <u>06</u> 2020 г., протокол № <u>10-19</u> /20
Зав.кафедрой Макаренко А.Н.
Руководитель основной профессиональной образовательной программы Чехунов О.А.

І. ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ

1.1. Цель дисциплины

Активно закрепить, обобщить, углубить и расширить знания, полученные при изучении базовых дисциплин, приобрести новые знания и сформировать умения и навыки по применению ЭВМ для проектирования, анализа и обеспечения работоспособности машин и механизмов, необходимые для изучения специальных дисциплин и для последующей профессиональной деятельности бакалавра.

1.2. Задачи:

- изучение общих принципов применения CAD и CAE систем при подготовке технической документации;
- приобретение навыков по применению специализированных пакетов прикладных программ для ЭВМ (APM WinMachine, КОМПАС 3D) для оценки функциональных возможностей типовых деталей механизмов и машин, критериев качества передачи движения, прочностной надежности конструкций.

II. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ (ОПОП)

2.1. Цикл (раздел) ОПОП, к которому относится дисциплина

Дисциплина «Компьютерное проектирование» относится к дисциплинам обязательной части (Б1.О.26) основной профессиональной образовательной программы.

2.2. Логическая взаимосвязь с другими частями ОПОП

Наименование предшествующих дис-	1. Математика		
циплин, практик, на которых бази-ру-	2. Физика		
ется данная дисциплина (модуль)	3. Информатика		
	4. Теоретическая механика		
	5. Инженерная графика		
	6. Материаловедение		
	7. Сопротивление материалов		
	знать:		
	– Основные физические величины,		
	необходимые для описания кине-		
	матики и динамики механического		
Требования к предварительной подго-	движения;		
товке обучающихся	- Основные свойства конструкцион-		
	ных материалов с точки зрения		
	прочности и триботехники		
	– Основные принципы построения		
	математических и компьютерных		

моделей
уметь:
– Составлять и решать системы ли-
нейных, векторных, дифференци-
альных уравнений;
- Использовать основные приемы
работы с информацией на ЭВМ
владеть:
– Методикой выбора и использова-
ния моделей физических процес-
сов;
– Навыками работы в прикладных
программах в системе Windows

III. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

L WIALIALI	<u>_</u> T	T	T
Коды	Формулировка	Индикаторы достиже-	Планируемые результаты обу-
компе-	компетенции	ния компетенции	чения по дисциплине
тенций			чения по дисциплине
ОПК 1	Способен ре-	ОПК 1.3 Применяет ин-	Знать:
	шать типовые за-	формационно-комму-	Базовые информационно-ком-
	дачи профессио-	никационные техноло-	муникационные технологии,
	нальной деятель-	гии в решении типовых	применяемые в инженерной
	ности на основе	задач в области агроин-	практике, методы анализа и син-
	знаний основных	женерии	теза механизмов различных ти-
	законов матема-		пов; основные характеристики
	тических и есте-		типовых механизмов; критерии
	ственных наук с		и эксплуатационные параметры,
	применением ин-		определяющие работоспособ-
	формационно-		ность и качество машин и меха-
	коммуникацион-		низмов
	ных технологий		уметь:
			решать типовые инженерные за-
			дачи проектирования; приме-
			нять методы математического
			анализа и моделирования; при-
			менять критерии работоспособ-
			ности машин и механизмов
			владеть
			навыками использования ин-
			формационных технологий при
			проектировании машин
		ОПК 1.4 Пользуется	Знать:
		специальными програм-	Основные прикладные про-
		мами и базами данных	граммы CAD и CAE систем, их
		при разработке техно-	основные характеристики и воз-
			можности

логий и средств механи-	уметь:
-	•
зации в сельском хозяй-	решать типовые инженерные за-
стве	дачи проектирования с исполь-
	зованием прикладных программ
	и баз данных
	владеть
	методиками сбора и анализа ис-
	ходных данных для расчета и
	проектирования; навыками ис-
	пользования специальных про-
	грамм для выполнения проект-
	ной и технологической доку-
	ментации

IV. ОБЪЕМ, СТРУКТУРА, СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, ВИДЫ УЧЕБНОЙ РАБОТЫ И ФОРМЫ КОНТРОЛЯ ЗНАНИЙ

4.1 Распределение объема учебной работы по формам обучения

Вид работы (в соответствии с учебным планом)		учебной гы, час
Формы обучения (вносятся данные по реализуемым формам)	Очная	Заочная
Семестр изучения дисциплины	5	5
Общая трудоемкость, всего, час	108	108
зачетные единицы	3	3
1.Контактная работа		
1.1.Контактная аудиторная работа (всего)	36,25	14,95
В том числе:		
Лекции (Лек)		4
Лабораторные занятия (Лаб)	36	4
Практические занятия (Пр)		
Установочные занятия (УЗ)		2
Предэкзаменационные консультации (Конс)		-
Текущие консультации (ТК)	-	4,5
1.2.Промежуточная аттестация		
Зачет (КЗ)	0,25	0,25
Экзамен (КЭ)		
Выполнение курсовой работы (проекта) (КНКР)		
Выполнение контрольной работы (ККН)	-	0,2
1.3. Контактная внеаудиторная работа (контроль)	18	4
2. Самостоятельная работа обучающихся (всего)	53,75	89,05
в том числе:		
Самостоятельная работа по проработке лекционного материала		1,05
Самостоятельная работа по подготовке к лабораторно-практи-	31,75	10
ческим занятиям	31,73	10
Работа над темами (вопросами), вынесенными на самостоятельное изучение	20	76
Самостоятельная работа по видам индивидуальных заданий:		
подготовка реферата (контрольной работы)		
Подготовка к зачету	2	2

4.2 Общая структура дисциплины и виды учебной работы

	Объем	ы видо	в учеб	бной раб ча		форма	ім обуч	чения,
	Очная форма обучения Заочная форма обучения							чения
Наименование модулей и разделов дис- циплины	Всего	иипмәړ	Лабораторно- практ.занятия	Самостоятельная работа	Всего	лекции	Лабораторно- практ.занятия	Самостоятельная работа
1	2	3	4	6	7	8	9	11
Модуль 1. «САD система КОМПАС 3D»	20	0	10	10	34	2	2	30
1. Графическая универсальная система КОМПАС 3D	4		2	2	7	1		6
2. Использование прикладных библиотек КОМПАС 3D при моделировании и оформлении документации	4		2	2	6,5	0,5		6
3. Основы создания и использования 3D моделей для конструирования, оформления документации и прототипирования изделий	6		4	2	12,5	0,5	2	10
4. Проектные расчеты средствами КОМПАС 3D	4		2	2	6			6
Итоговый контроль по модулю	2			2	2			2
Модуль 2. «САЕ система APM WinMachine»	69,75	0	26	43,75	63,25	2	2	59,05
1 Общие сведения о системе APM WinMachine	2,75		2	0,75	6			6
2 Основы моделирования деталей ма- шин	7		4	3	12	1		11
3. Особенности работы в модулях APM WinMachine	58		20	38	43,25	1	2	40,05
Итоговый контроль по модулю	2			2	2			2
Предэкзаменационные консультации								
Текущие консультации		-				4,	5	
Установочные занятия	-					2	?	
Промежуточная аттестация	0,25 0,45							
Контактная аудиторная работа (всего)	36,25	0	36	-	14,95	4	4	-
Контактная внеаудиторная работа (всего)	18			4	1			
Самостоятельная работа (всего)	53,75 89,05							
Общая трудоемкость	108 108							

4.3 Содержание дисциплины

Наименование и содержание модулей и разделов дисциплины

Модуль 1. «САD система КОМПАС 3D»

1. Графическая универсальная система КОМПАС 3D

- 1.1 САПР среднего уровня КОМПАС 3D. Основная задача системы. Модульная структура САПР. Ассоциативный чертеж Стартовая страница. Основные элементы интерфейса. Главное меню. Стандартная панель. Панель Вид. Работа с геометрическими объектами. Перемещение и вид курсора. Привязки. Установка глобальных привязок. Сетка. Управляющие клавиши. Основные принципы создания геометрических объектов
- 1.2 Оформление чертежей. Размеры и текстовые надписи. Размещение текста. Приемы простановки размеров. Линейный, диаметральный и радиальный размеры. Предельные отклонения. Угловые размеры. Авторазмер. Обозначение разрезов и сечений. Обозначение направления проецирования. Выносные элементы. Оформление технических требований
- 1.3 Технологические обозначения. Шероховатость. База. Допуски формы и расположения. Команды редактирования объектов. Изменение формы
- 1.4 Спецификация проекта. Общая схема процесса проектирования Технические требования. Заполнение основной надписи. Выделение объектов. Редактирование объектов. Измерения на моделях
- 1.5 Оформление спецификаций и других текстовых документов проекта
- 2. Использование прикладных библиотек КОМПАС 3D при моделировании и оформлении документации
- 2.1 Библиотека материалов и сортаментов
- 2.2 Библиотека стандартных изделий
- 2.3 Библиотека оформлений

3. Основы создания и использования 3D моделей для конструирования, оформления документации и прототипирования изделий

- 3.1 Трехмерное моделирование. Введение в трехмерное моделирование. Основные элементы интерфейса. Панели Вид. управления отображением модели. Дерево модели. Состав Дерева модели. Вспомогательная геометрия. Компактная панель. Инструментальная панель. Панель переключения. Настройка параметров текущей детали. Панель свойств
- 3.2 Редактирование в трехмерном пространстве Общий порядок трехмерного моделирования. Редактирование детали
- 3.3 Основные операции для создания 3D-модели Основные операции для создания 3D-модели. Операция выдавливания. Требования к эскизу операции выдавливания. Редактирование эскиза Параметризация эскиза. Операция вращения. Требования к эскизу операции вращения. Кинематическая операция. Требования к эскизам кинематической операции Операция по сечениям Требования к эскизам операции по сечениям
- 3.4 Использование ассоциативных видов для создания чертежей

4. Проектные расчеты средствами КОМПАС 3D

- 4.1 Расчеты механических передач
- 4.2 Расчеты валов
- 4.3 Расчеты пружин
- 4.4 Прочностные расчеты методом конечных элементов. Библиотека FEM

Модуль 2. «САЕ система APM WinMachine»

1. Общие сведения о построении системы APM WinMachine

- 1.1. Этапы автоматизации разработки изделия. Автоматизация проектирования и автоматизация конструирования.
- 1.2 Общие сведения о системе APM WinMachine. Программные и аппаратные требования для работы системы

2. Основы моделирования деталей машин

2.1 Понятие модели. Существующие виды моделей при проектировании деталей машин. Критерии работоспособности деталей машин.

Наименование и содержание модулей и разделов дисциплины

- 2.2 Моделирование надежности и функционирования изделий.
- 2.3 Метод конечных элементов в проектировочных расчетах.

3. Особенности работы в модулях APM WinMachine

- 3.1 Подсистема APM Joint расчета и проектирования соединений деталей машин и элементов конструкций.
- 3.2 Подсистема APM Trans проектирования передач вращения
- 3.3 Подсистема APM Shaft расчета, анализа и проектирования валов и осей.
- 3.4 Подсистема APM Bear расчета неидеальных подшипников качения
- 3.5 Подсистема APM Drive расчета и проектирования приводов
- 3.6 Подсистема APM Spring расчета и проектирования пружин и упругих элементов машин.
- 3.7 Подсистема APM Structure3D расчета напряженно-деформированного состояния трехмерных конструкций
- 3.8 Подсистема APM Studio генерации трехмерной конечно-элементной сетки и анализ напряженно-деформированного состояния произвольной детали в модуле Structure3D

V. ОЦЕНКА ЗНАНИЙ И ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ ЗНАНИЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

5.1. Формы контроля знаний, рейтинговая оценка и формируемые ком-

петенции (очная форма обучения)

<u>№</u> п/п	енции (очная форма об Наименование рейтингов, модулей и блоков		Объем учебной работы			аботы	Форма кон- троля знаний		(max)
		Формируемые компетенции	Общая трудоемкость	Лекции	Лаборпракт.занятия	Самост. работа		Количество баллов (min)	Количество баллов (max)
Всего	о по дисциплине	ОПК 1.3, ОПК 1.4	108	0	36	53,75		51	100
I. Py	бежный рейтинг						Сумма баллов по модулям	31	60
Моду ПАС	ль 1. «CAD система КОМ- 3D»	ОПК 1.3, ОПК 1.4	18	0	10	10		15	30
	фическая универсальная си- КОМПАС 3D	ОПК 1.3, ОПК 1.4	4		2	2	Устный опрос		
лиоте	пользование прикладных биб- ек КОМПАС 3D при модели- пии и оформлении документа-	ОПК 1.3, ОПК 1.4	4		2	2	Устный опрос		
ния 3 ния, с	новы создания и использова- D моделей для конструирова- формления документации и отипирования изделий	ОПК 1.3, ОПК 1.4	6		4	2	Устный опрос		
	оектные расчеты средствами ПАС 3D	ОПК 1.3, ОПК 1.4	4		2	2	Устный опрос		
Итого	овый контроль по модулю		2			2	Ситуационные задачи		
	ль 2. «CAE система APM Iachine»	ОПК 1.3, ОПК 1.4	69,75	0	26	43,75		16	30
	цие сведения о системе APM fachine	ОПК 1.3, ОПК 1.4	2,75		2	0,75	Устный опрос		
2 Осн маши	овы моделирования деталей н	ОПК 1.3, ОПК 1.4	7		4	3	Устный опрос		
	обенности работы в модулях WinMachine	ОПК 1.3, ОПК 1.4	58		20	38	Устный опрос		
Итого	овый контроль по модулю		2			2	Ситуационные задачи		

II. Творческий рейтинг				2	5
III. Рейтинг личностных ка- честв				3	10
IV . Рейтинг сформированно- сти прикладных практиче- ских требований				+	+
V. Промежуточная аттеста- ция				15	25

5.2. Оценка знаний студента

5.2.1. Основные принципы рейтинговой оценки знаний

Оценка знаний по дисциплине осуществляется согласно Положению о балльно-рейтинговой системе оценки обучения в ФГБОУ Белгородского ГАУ.

Уровень развития компетенций оценивается с помощью рейтинговых баллов.

Рейтинги	Характеристика рейтингов	Макси- мум баллов
Рубежный	Отражает работу студента на протяжении всего периода изучения дисциплины. Определяется суммой баллов, которые студент получит по результатам изучения каждого модуля.	60
Творческий	Результат выполнения студентом индивидуального творческого задания различных уровней сложности, в том числе, участие в различных конференциях и конкурсах на протяжении всего курса изучения дисциплины.	5
Рейтинг лич- ностных качеств	Оценка личностных качеств обучающихся, проявленных ими в процессе реализации дисциплины (модуля) (дисциплинированность, посещаемость учебных занятий, сдача вовремя контрольных мероприятий, ответственность, инициатива и др.)	10
Рейтинг сформированности прикладных практических требований	Оценка результата сформированности практических навыков по дисциплине (модулю), определяемый преподавателем перед началом проведения промежуточной аттестации и оценивается как «зачтено» или «не зачтено».	+
Промежуточная аттестация	Является результатом аттестации на окончательном этапе изучения дисциплины по итогам сдачи зачета или экзамена. Отражает уровень освоения информационно-теоретического компонента в целом и основ практической деятельности в частности.	25
Итоговый рей- тинг	Определяется путём суммирования всех рейтингов	100

Итоговая оценка компетенций студента осуществляется путём автоматического перевода баллов общего рейтинга в стандартные оценки:

Не зачтено	Зачтено	Зачтено	Зачтено
менее 51 балла	51-67 баллов	67,1-85 баллов	85,1-100 баллов

5.2.2. Критерии оценки знаний студента на зачете

Оценка «зачтено» на зачете определяется на основании следующих критериев:

- студент усвоил взаимосвязь основных понятий дисциплины и их значение для приобретаемой профессии, при этом проявил творческие способности в понимании, изложении и использовании учебно-программного материала;
- студент демонстрирует полное знание учебно-программного материала, успешно выполнил предусмотренные в программе задания, усвоил основную литературу, рекомендованную в программе;
- студент показал систематический характер знаний по дисциплине и способность к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

Оценка «не зачтено» на зачете определяется на основании следующих критериев:

- студент допускает грубые ошибки в ответе на зачете и при выполнении заданий, при этом не обладает необходимыми знаниями для их устранения под руководством преподавателя;
- студент демонстрирует проблемы в знаниях основного учебно-программного материала, допускает принципиальные ошибки в выполнении предусмотренных программой заданий;
- студент не может продолжать обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.
- **5.3.** Фонд оценочных средств. Типовые контрольные задания или иные материалы, необходимые для оценки формируемых компетенций по дисциплине (приложение 1)

VI. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная учебная литература

1. Конюх В.Л. Проектирование автоматизированных систем производства: Учебное пособие / В.Л. Конюх. -М.: КУРС: НИЦ ИНФРА-М, 2014. -312 с. Режим доступа: (ЭБС "Знаниум") http://znanium.com/bookread2.php?book=449810

- 2. Остяков, Ю. А. Проектирование механизмов и машин: эффективность, надежность и техногенная безопасность: учебное пособие / Ю. А. Остяков, И. В. Шевченко. 1. М.: ООО "Научно-издательский центр ИНФРА-М", 2016. 260 с.— Режим доступа: (ЭБС "Знаниум") http://znanium.com/bookread2.php?book=513552

6.2. Дополнительная литература

- 1. Основы проектирования машин: учебное пособие [Электронный ресурс] / И.Ф.Дьяков, В.Я. Недоводеев, В.Н. Демокритов и др.. Ульяновск: Ул-ГТУ, 2012. 133 с. Режим доступа: http://window.edu.ru/resource/290/77290/files/ulstu2012-116.pdf
- 2. Дьяков, И.Ф. Метод конечных элементов в расчетах стержневых систем : учебное пособие [Электронный ресурс] / И.Ф.Дьяков, С.А.Черный, А.Н.Черный. Ульяновск: УлГТУ, 2010. -133 с. Режим доступа: (ЭБС "AgriLib")http://window.edu.ru/resource/481/74481/files/ulstu2011-36.pdf
- 3. Остяков, Ю.А. Проектирование деталей и узлов конкурентоспособных машин. [Электронный ресурс] / Ю.А. Остяков, И.В. Шевченко. Электрон. дан. СПб. : Лань, 2013. 336 с. . Режим доступа: (ЭБС "Лань") http://e.lanbook.com/book/30428/#1
- 4. Самогин, Ю.Н. Метод конечных элементов в задачах сопротивления материалов [Электронный ресурс]/ Ю.Н. Самогин, В.Е.Хроматов, В.П. Чирков М.: Физматлит, 2012. 200 с. Режим доступа: (ЭБС "Знаниум") http://znanium.com/bookread2.php?book=544799
- 5. Шустов, М. А. Методические основы инженерно-технического творчества / М. А. Шустов. 1. Москва : ООО "Научно-издательский центр ИН-ФРАМ", 2016. 128 с. :http://znanium.com/bookread2.php?book=520844

6.2.1. Периодические издания

6.3. Учебно-методическое обеспечение самостоятельной работы обучающихся по дисциплине

Самостоятельная работа обучающихся заключается в инициативном поиске информации о наиболее актуальных проблемах, которые имеют большое практическое значение и являются предметом научных дискуссий в рамках изучаемой дисциплины.

Самостоятельная работа планируется в соответствии с календарными планами рабочей программы по дисциплине и в методическом единстве с тематикой учебных аудиторных занятий.

1. УМК по дисциплине «Компьютерное проектирование» — Режим доступа: https://www.do.belgau.edu.ru -(логин, пароль)

6.3.1. Методические указания по освоению дисциплины

F	,
Вид учебных занятий	Организация деятельности студента
Лаборатор-	Проработка рабочей программы, уделяя особое внимание целям
но-практи-	и задачам структуре и содержанию дисциплины. Конспектиро-
ческие заня-	вание источников. Работа с конспектом лекций, подготовка от-
тия	ветов к контрольным вопросам, просмотр рекомендуемой лите-
	ратуры, работа с текстом (методика полевого опыта), решение
	задач по алгоритму и решение ситуационных задач Прослуши-
	вание аудио- и видеозаписей по заданной теме.
Самостоя-	Знакомство с электронной базой данных кафедры морфологии
тельная	и физиологии, основной и дополнительной литературой, вклю-
работа	чая справочные издания, зарубежные источники, конспект ос-
	новных положений, терминов, сведений, требующих для запо-
	минания и являющихся основополагающими в этой теме. Со-
	ставление аннотаций к прочитанным литературным источникам
	и др. Решение ситуационных задач по своему индивидуальному
	варианту, в которых обучающемуся предлагают осмыс-
	лить реальную профессионально-ориентированную ситуацию,
	необходимую для решения данной проблемы.
	Тестирование - система стандартизированных заданий, позво-
	ляющая автоматизировать процедуру измерения уровня знаний
	и умений обучающегося.
	Контрольная работа - средство проверки умений применять по-
	лученные знания для решения задач определенного типа по теме
	или разделу.
Подготовка к	При подготовке к экзамену/зачету необходимо ориентиро-
экзамену/	ваться на конспекты лекций, рекомендуемую литературу, полу-
зачету	ченные навыки по решению ситуационных задач

6.3.2. Видеоматериалы

Каталог учебных видеоматериалов на официальном сайте ФГБОУ ВО Белгородский ГАУ — Режим доступа:

http://www.bsaa.edu.ru/InfResource/library/video/mehanizatsiya.php

6.4. Ресурсы информационно-телекоммуникационной сети «Интернет», современные профессиональные базы данных, информационные справочные системы

- 1. Российское образование. Федеральный портал http://www.edu.ru
- 2. Центральная научная сельскохозяйственная библиотека http://www.cnshb.ru/
- 3. Российская государственная библиотека http://www.rsl.ru
- 4. Российское инженерное ПО http://www.ascon.ru/
- 5. Инженерные расчеты для машиностроения и строительства http://www.apm.ru/
- 6. САПР Журнал http://sapr-journal.ru
- 7. САПР и графика <u>http://sapr.ru</u>
- 8. Продукты для 3D проектирования и визуализации https://www.pointcad.ru/

VII. MATEPИAЛЬНО-TEXHUYECKOE ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ

7.1. Помещения, укомплектованные специализированной мебелью, оснащенные оборудованием и техническими средствами обучения, служащими для представления учебной информации большой аудитории

Виды помещений	Оборудование и технические сред-
	ства обучения
Учебная аудитория для проведения заня-	Специализированная мебель для обучаю-
тий лекционного типа, семинарского типа,	щихся на 28 посадочных мест.
групповых и индивидуальных консульта-	Рабочее место преподавателя: стол, стул,
ций, текущего контроля и промежуточной	доска меловая настенная.
аттестации №44.	Набор демонстрационного оборудования:
	- проектор EPSON;
	- экран для проектора;
	- 2 акустические колонки
	- Информационные стенды (планшеты
	настенные): по пакету KOMPAS, по пакету
	APM WinMachine
	-компьютеры (системный блок: Asus
	P4BGL-MX\Intel Celeron, 1715 MHz\256 M6
	PC2700 DDR SDRAM\ST320014A (20 Гб,
	5400 RPM, Ultra-ATA/100)\ NEC CD-ROM
	CD-3002A\Intel(R) 82845G/GL/GE/PE/GV
	Graphics Controller, монитор: LG 777(N) /
	786(N) [22" CRT], клавиатура, мышь.) в ко-
	личестве 15 единиц с возможностью под-
	ключения к сети Интернет и обеспечения

	доступа в электронную информационнооб-
	разовательную среду Белгородского ГАУ;
	- МФУ Brother;
	- плоттер НР
Помещения для самостоятельной работы	Специализированная мебель; комплект
обучающихся с возможностью подключе-	компьютерной техники в сборе (системный
ния к Интернету и обеспечением доступа в	блок: Asus P4BGL-MX\Intel Celeron, 1715
электронную информационно-образова-	МНz\256 Мб РС2700 DDR
тельную среду Белгородского ГАУ (чи-	SDRAM\ST320014A (20 Γ6, 5400 RPM,
тальные залы библиотеки)	Ultra-ATA/100)\ NEC CD-ROM CD-
	$3002A\Intel(R)$ 82845G/GL/GE/PE/GV
	Graphics Controller, монитор: Proview
	777(N) / 786(N) [17" CRT], клавиатура,
	мышь.) в количестве 10 единиц с возможно-
	стью подключения к сети Интернет и обес-
	печения доступа в электронную информа-
	ционнообразовательную среду Белгород-
	ского ГАУ; настенный плазменный телеви-
	зор SAMSUNG PS50C450B1 Black HD (диа-
	гональ 127 см); аудиовидео кабель НОМІ
Помещение для хранения и профилактиче-	Специализированная мебель:
ского обслуживания учебного оборудова-	Рабочее место лаборанта:
ния №37	_

7.2. Комплект лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства

Виды помещений	Оборудование
Учебная аудитория для проведения занятий	MS Windows WinStrtr 7 Acdmc Legalization
лекционного типа, семинарского типа,	RUS OPL NL. Договор №180 от 12.02.2011.
групповых и индивидуальных консульта-	Срок действия лицензии – бессрочно.
ций, текущего контроля и промежуточной	MS Office Std 2010 RUS OPL NL Acdmc.
аттестации №44	Договор №180 от 12.02.2011. Срок дей-
	ствия лицензии – бессрочно.
	Anti-virus Kaspersry Endpoint Security для
	бизнеса (Сублицензионный договор №42 от
	06.12.2019) - 522 лицензия. Срок действия
	лицензии по 01.01.2021
	APM WinMachine 17 «Прочностной расчет
	и проектирование конструкций, деталей
	машин и механизмов», (лицензионный до-
	говор № ФПО-20/680/2019-33-19 от
	24.09.2018 г.) - учебный класс на 30 сете-
	вых учебных и 2 локальные преподаватель-
	ские лицензию. Срок действия лицензии –
	бессрочно (отечественное ПО).
	Учебный комплект программного обеспе-
	чения: Пакет обновления КОМПАС-3D до
	версий V16 и V17. (сублицензионный дого-
	вор № МЦ-15-00330-0641 от 14 сентября
	2015 г.) - 50 мест. Срок действия лицензии

Помещения для самостоятельной работы обучающихся с возможностью подключения к Интернету и обеспечением доступа в электронную информационно-образовательную среду Белгородского ГАУ (читальные залы библиотеки)

– бессрочно. (отечественное ПО)

Microsoft Imagine Premium Electronic Software Delivery. Сублицензионный договор №937/18 на передачу неисключительных прав от 16.11.2018. Срок действия лицензии- бессрочно. MS Office Std 2010 RUSOPLNL Acdmc. Договор №180 от 12.02.2011. Срок действия лицензии – бес-Anti-virus Kaspersry **Endpoint** срочно. Security для бизнеса (Сублицензионный договор №42 от 06.12.2019) - 522 лицензия. Срок действия лицензии по 01.01.2021 Информационно правовое обеспечение "Гарант" (для учебного процесса). Договор №ЭПС-12-119 от 01.09.2012. Срок действия - бессрочно. СПС КонсультантПлюс: Версия Проф. Консультант Финансист. КонсультантПлюс: Консультации для бюджетных организаций. Договор от 01.01.2017. Срок действия - бессрочно. RHVoice-v0.4а2 синтезатор речи Программа Balabolka (portable) для чтения вслух текстовых файлов. Программа экранного доступа NDVA

Помещение для хранения и профилактического обслуживания учебного оборудования №37

7.3. Электронные библиотечные системы и электронная информационно-образовательная среда

- ЭБС «ZNANIUM.COM», договор на оказание услуг № 0326100001919000019 с Обществом с ограниченной ответственностью «ЗНАНИУМ» от 11.12.2019
- ЭБС «AgriLib», лицензионный договор №ПДД 3/15 на предоставление доступа к электронно-библиотечной системе ФГБОУ ВПО РГАЗУ от 15.01.2015
 ЭБС «Лань», договор №27 с Обществом с ограниченной ответственностью
- «Издательство Лань» от 03.09.2019
- ЭБС «Руконт», договор №ДС-284 от 15.01.2016 с открытым акционерным обществом «ЦКБ»БИБКОМ», с обществом с ограниченной ответственностью «Агентство «Книга-Сервис»;

VIII. ОСОБЕННОСТИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ) ДЛЯ ИНВАЛИДОВ И ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖ-НОСТЯМИ ЗДОРОВЬЯ

В случае обучения в университете инвалидов и лиц с ограниченными возможностями здоровья учитываются особенности психофизического развития, индивидуальные возможности и состояние здоровья таких обучающихся.

Образование обучающихся из числа инвалидов и лиц с ограниченными возможностями здоровья может быть организовано как совместно с другими

обучающимися, так и в отдельных группах. Обучающиеся из числа лиц с ограниченными возможностями здоровья обеспечены печатными и (или) электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья. Обучение инвалидов осуществляется также в соответствии с индивидуальной программой реабилитации инвалида (при наличии).

Для лиц с ограниченными возможностями здоровья по слуху возможно предоставление учебной информации в визуальной форме (краткий конспект лекций; тексты заданий). На аудиторных занятиях допускается присутствие ассистента, а также сурдопереводчиков и (или) тифлосурдопереводчиков. Текущий контроль успеваемости осуществляется в письменной форме: обучающийся письменно отвечает на вопросы, письменно выполняет практические задания. Доклад (реферат) также может быть представлен в письменной форме, при этом требования к содержанию остаются теми же, а требования к качеству изложения материала (понятность, качество речи, взаимодействие с аудиторией и т. д.) заменяются на соответствующие требования, предъявляемые к письменным работам (качество оформления текста н списка литературы, грамотность, наличие иллюстрационных материалов и т.д.). Промежуточная аттестация для лиц с нарушениями слуха проводится в письменной форме, при этом используются общие критерии оценивания. При необходимости время подготовки к ответу может быть увеличено.

Для лиц с ограниченными возможностями здоровья по зрению университетом обеспечивается выпуск и использование на учебных занятиях альтернативных форматов печатных материалов (крупный шрифт или аудиофайлы) а также обеспечивает обучающихся надлежащими звуковыми средствами воспроизведения информации (диктофонов и т.д.). Допускается присутствие ассистента, оказывающего обучающемуся необходимую техническую помощь. Текущий контроль успеваемости осуществляется в устной форме. При проведении промежуточной аттестации для лиц с нарушением зрения тестирование может быть заменено на устное собеседование по вопросам.

Для лиц с ограниченными возможностями здоровья, имеющих нарушения опорно- двигательного аппарата материально-технические условия университета обеспечивают возможность беспрепятственного доступа обучающихся в учебные помещения, а также пребывания в них (наличие пандусов, поручней, расширенных дверных проемов, лифтов; наличие специальных кресел и других приспособлений). На аудиторных занятиях, а также при проведении процедур текущего контроля успеваемости и промежуточной аттестации лицам с ограниченными возможностями здоровья, имеющим нарушения опорно-двигательного аппарата могут быть предоставлены необходимые технические средства (персональный компьютер, ноутбук или другой гаджет); допускается присутствие ассистента (ассистентов), оказывающего обучающимся необходимую техническую помощь (занять рабочее место, передвигаться по аудитории, прочитать задание, оформить ответ, общаться с преподавателем).

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ имени В.Я.ГОРИНА»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ для проведения промежуточной аттестации обучающихся

по дисциплине (модулю) «Компьютерное проектирование»

Направление подготовки: 35.03.06 - Агроинженерия

шифр, наименование

Направленность (профиль): Технические системы в агробизнесе

Квалификация: бакалавр

Год начала подготовки: 2020

1. Перечень компетенций, соотнесенных с индикаторами достижения компетенций, с указанием этапов их формирования в процессе освоения образовательной программы

Код	Формулировка	Индикаторы	Этап (уро-	Планируемые результаты	Наименование моду-	Наименование от	еночного средства
контро-	контролируе-	достижения	вень) освое-	обучения	лей и (или) разделов	Текущий кон-	Промежуточная
лируе-	мой компетен-	компетенции	ния компе-		дисциплины	троль	аттестация
мой	ции		тенции				
компе-							
тен-ции ОПК 1	Canadan	ОПИ 12 Пах	п 🗸	2	Marry 1 (CAD av	200000000000000000000000000000000000000	C
Olik i	Способен ре-	ОПК 1.3 При-	Первый	Знать:	Модуль 1. «САД си-	Защита лабора-	Ситуационные
	шать типовые	меняет инфор-	этап (по-	Базовые информаци-	стема КОМПАС	торных работ	задачи
	задачи профес-		роговой	онно-коммуникационные	3D»	Устный опрос	C
	сиональной де-	муникацион-	уровень)	технологии, применяе-	Модуль 2. «САЕ си-	Защита лабора-	Ситуационные
	ятельности на	ные технологии		мые в инженерной прак-	стема АРМ	торных работ	задачи
	основе знаний	в решении ти-		тике, методы анализа и	WinMachine»	Устный опрос	
	основных зако-	повых задач в		синтеза механизмов раз-			
	нов математи-	области агро-		личных типов; основные			
	ческих и есте-	инженерии		характеристики типовых			
	ственных наук			механизмов; критерии и			
	с применением			эксплуатационные пара-			
	информаци-			метры, определяющие			
	онно-коммуни-			работоспособность и ка-			
	кационных тех-			чество машин и механиз-			
	нологий			МОВ			
			Второй	Уметь: решать типовые	Модуль 1. «CAD си-	Защита лабора-	Ситуационные
			этап	инженерные задачи про-	стема КОМПАС	торных работ	задачи
			(продви-	ектирования; применять	3D»	Устный опрос	
			нутый Нутый	методы математического			
				анализа и моделирова-	Модуль 2. «САЕ си-	Защита лабора-	Ситуационные
			уровень)	ния; применять критерии	стема АРМ	торных работ	задачи
				работоспособности ма-	WinMachine»	Устный опрос	
				шин и механизмов		•	

	Третий этап (высокий уровень)	Владеть: навыками использования информационных технологий при проектировании машин	Модуль 1. «CAD си- стема КОМПАС 3D» Модуль 2. «CAE си- стема APM WinMachine»	Защита лабораторных работ Устный опрос Защита лабораторных работ Устный опрос	Ситуационные задачи Ситуационные задачи
ОПК 1.4 Пользуется специальными программами и базами данных при разработке	Первый этап (пороговой уровень)	Знать: Основные прикладные программы САD и САЕ систем, их основные ха- рактеристики и возмож- ности	Модуль 1. «CAD система КОМПАС 3D» Модуль 2. «CAE система APM WinMachine»	Защита лабораторных работ Устный опрос Защита лабораторных работ Устный опрос	Ситуационные задачи Ситуационные задачи
технологий и средств механизации в сельском хозяйстве	Второй этап (продвинутый уровень)	Уметь: решать типовые инженерные задачи проектирования с использованием прикладных программ и баз данных	Модуль 1. «CAD система КОМПАС 3D» Модуль 2. «CAE система APM WinMachine»	Защита лабораторных работ Устный опрос Защита лабораторных работ Устный опрос	Ситуационные задачи Ситуационные задачи
	Третий этап (высокий уровень)	Владеть: методиками сбора и анализа исходных данных для расчета и проектирования; навыками исполь-	Модуль 1. «САD си- стема КОМПАС 3D»	Защита лабораторных работ Устный опрос	Ситуационные задачи
		зования специальных программ для выполнения проектеной и технологической документации	Модуль 2. «САЕ система APM WinMachine»	Защита лабораторных работ Устный опрос	Ситуационные задачи

2.Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

		Этапы (уровни) и кр	итерии оценивания резу	ультатов обучения, шка	лы оценивания
Компетенция	Планируемые результаты обучения, соотнесенные с индикаторами достижения	Компетентность не сформирована	Пороговый уровень компетентности	Продвинутый уро- вень компетентно- сти	Высокий уровень
	компетенции (показатели достижения заданного уровня компетенции)	не зачтено	зачтено	зачтено	зачтено
ОПК 1 Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических и естественных наук с применением инфор-	ОПК 1.3 Применяет информационно-коммуникационные технологии в решении типовых задач в области агроинженерии	Не способен использовать информационно-коммуни-кационные технологии при решении типовых задач в области агроинженерии	Ограниченно применяет информационно- коммуникационные технологии при решении элементарных инженерные задачи в области агроинженрии	Применяет основные информационно-ком-муникационные технологии при решении элементарных инженерные задачи в области агроинженрии	Свободно применяет информационно-коммуникационные технологии при решении элементарных инженерные задачи в области агроинженрии
мационно-коммуника- ционных технологий	Знать: Базовые информационно-коммуникационные технологии, применяемые в инженерной практике, методы анализа и синтеза механизмов различных типов; основные характеристики типовых механизмов; критерии и эксплуатационные параметры, определяющие работоспособность и качество машин и механизмов	Не знает элементарные информационно-коммуникационные технологии, применяемые в инженерной практике, не знает критерии и эксплуатационные параметры, определяющие работоспособность и качество машин и механизмов	Знает элементарные базовые информационно-коммуникационные технологии, применяемые в инженерной практике, знает основные критерии и эксплуатационные параметры, определяющие работоспособность и качество машин и механизмов	Знает типовые информационно-коммуникационные технологии, применяемые в инженерной практике, уверенно применяет критерии и эксплуатационные параметры, определяющие работоспособность и качество машин и механизмов	Свободно ориентируется и выбирает современные информационно-коммуникационные технологии, применяемые в инженерной практике, уверенно применяет критерии и эксплуатационные параметры, определяющие работоспособность и качество машин и механизмов
	Уметь: решать типовые ин-	Не умеет решать инженерные задачи; применять ме-	Умеет решать типовые инженерные задачи проектирования.	Способен решать нетипичные инженер-	Способен самостоятельно формулиро-

	женерные задачи проектирования; применять методы математического анализа и моделирования; применять критерии работоспособности машин и механизмов	тоды математического анализа и моделирования. Испытывает затруднения при использовании критериев работоспособности машин и механизмов	Частично умеет применять критерии работоспособности машин и механизмов	ные задачи проектирования. Умеет применять методы математического анализа и моделирования, применять критерии работоспособности машин и механизмов	вать и решать ком- плексные инженер- ные задачи проекти- рования; свободно применять методы математического анализа и моделиро- вания; применять критерии работоспо- собности машин и механизмов
	Владеть: навыками использования информационных технологий при проектировании машин	Не владеет навыками использования информационных технологий при проектировании машин	Частично владеет навыками использования информационных технологий при проектировании машин	Уверенно владеет навыками использования информационных технологий при проектировании машин	Свободно выбирает и владеет навыками использования информационных технологий при проектировании машин
	ОПК 1.4 Пользуется специальными программами и базами данных при разработке технологий и средств механизации в сельском хозяйстве	Не умеет использовать специальные программы и базы данных при разработке технологий и средств механизации в сельском хозяйстве	Ограниченно использует специальные программы и базы данных при разработке технологий и средств механизации в сельском хозяйстве	Уверенно использует- специальные про- граммы и базы дан- ных при разработке технологий и средств механизации в сель- ском хозяйстве	Свободно выбирает и использует специальные программы и базы данных при разработке технологий и средств механизации в сельском хозяйстве
	Знать: Основные прикладные программы САD и САЕ систем, их основные характеристики и возможности	Не знает основные программы CAD и CAE систем, их основные характеристики и возможности	Знает основные при- кладные программы САD и САЕ систем, их основные характе- ристики и возможно- сти;	Знает широкий круг прикладных программы САD и САЕ систем, их детальные характеристики и возможности;	Свободно ориентируется в прикладных программах САD и САЕ систем, их основных характеристиках и возможностях; способен аргументированно выбрать программы для решения текущей инженерной задачи
	Уметь: решать типовые инженерные задачи проектирования с использованием прикладных программ и баз	Не умеет решать типовые инженерные задачи проектирования с использова-	Умеет решать типовые задачи проектирования. Частично	Способен решать задачи проектирования средней сложности с	Способен самостоятельно формулировать и решать задачи

Д	данных	нием основных приклад-	умеет применять огра-	использованием ос-	проектирования раз-
		ных программ и баз дан-	ниченный набор при-	новных прикладных	личного типа; подби-
		ных	кладных программ и	программ и баз дан-	рать и применять ши-
			баз данных	ных	рокий круг приклад-
					ных программ и баз
					данных
H	Владеть:	Не имеет представления о	Частично владеет ме-	Уверенно владеет ос-	Свободно владеет
N	методиками сбора и ана-	методиках сбора и анализа	тодиками сбора и ана-	новными методиками	методиками сбора и
	лиза исходных данных для	исходных данных для рас-	лиза исходных дан-	сбора и анализа ис-	анализа исходных
	расчета и проектирования;	чета и проектирования. От-	ных для расчета и про-	ходных данных для	данных для расчета и
1	навыками использования	сутствуют элементарные	ектирования; навы-	расчета и проектиро-	проектирования.
	специальных программ для выполнения проектной и технологической документации	навыки использования спе-	ками использования	вания. Обладает навы-	навыками использо-
		циальных программ для	специальных про-	ками использования	вания специальных
		выполнения проектной и	грамм для выполне-	специальных про-	программ для выпол-
T		технологической докумен-	ния проектной и тех-	грамм для выполне-	нения проектной и
T		тации	нологической доку-	ния проектной и тех-	технологической до-
			ментации	нологической доку-	кументации, сво-
				ментации	бодно выступает в
					дискуссии и аргумен-
					тированно защищает
					принятые решения.

3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Первый этап (пороговой уровень)

ЗНАТЬ (помнить и понимать): студент помнит, понимает и может продемонстрировать широкий спектр фактических, концептуальных, процедурных знаний.

Контрольные задания для устного опроса:

- 1. Принципы и задачи проектирования.
- 2. Уровни, аспекты и этапы проектирования.
- 3. Типовые проектные процедуры
- 4. Лингвистическое обеспечение САПР.
- 5. Математическое обеспечение автоматизированного проектирования.
- 6. Основные положения автоматизации разработки и выполнения проектно-конструкторских графических документов.
- 7. Подходы кконструированию.
- 8. Геометрическое моделирование и организация графических данных .
- 9. Методы создания моделей ГО и ГИ.
- 10. Графическая универсальная система КОМПАС.
- 11. Запуск системы КОМПАС.
- 12. Интерфейс пользователя
- 13. Команды редактора КОМПАС.
- 14. Изменение параметров рабочей среды КОМПАС.
- 15. Структура запросов команд в зависимости от ключей
- 16. Определение пользовательской системы координат.
- 17. Ввод координат. Команды управления экраном.
- 18. Привязка координат. Координатные фильтры и отслеживание.
- 19. Вычисление точек и значений .Выбор объектов
- 20. Команды управления основными функциями КОМПАС.
- 21. Создание или открытие чертежа.
- 22. Границы чертежа.
- 23. Форматы единиц.
- 24. Доступ к системным переменным.
- 25. Поясните аббревиатуру ЕСКД.
- 26. Автоматизация разработки и выполнения конструкторской документации в САПР.
- 27. Структура и основные принципы построения системы КОМПАС.
- 28. Какие бывают виды?
- 29. Структура САПР.
- 30. Что такое Операционная система?
- 31. Структура типового Windows –приложения.
- 32. Какие элементы управления имеются в окне?
- 33. Где расположена панель задач?
- 34. Как запустить программу на выполнение?
- 35. Перечислите плоскости проекций.
- 36. Что такое проекция?
- 37. Что такое чертеж?
- 38. Что такое мощность?
- 39. Как определить КПД?

- 40. Привести примеры САД, САМ, САЕ систем?
- 41. Применение ЭВМ на разных этапах разработки изделия.
- 42. Автоматизация проектирования и автоматизация конструирования.
- 43. Структура построения системы APM WinMachine,
- 44. Общие положения о работе с подсистемами и графическими редакторами.
- 45. Понятие модели.
- 46. Критерии адекватности и применимости моделей.
- 47. Применение математического аппарата для построения моделей.
- 48. Моделирование надежности и функционирования изделий.
- 49. Метод конечных разностей и метод конечных элементов
- 50. Обеспечение прочности деталей.
- 51. Выбор рациональной конструктивно-силовой схемы.
- 52. Равнопрочность и выравнивание напряжений в конструкциях
- 53. Уменьшение концентрации напряжений. Снижение динамической составляющей нагрузки.
- 54. Снижение материалоемкости, уменьшение габаритов.
- 55. Критерии анализа конструкций.
- 56. Выбор оптимальных параметров деталей и узлов.
- 57. Какие базы данных реализованы в САD системе КОМПАС?
- 58. Автоматизация проектирования.
- 59. Порядок построения конечно-элементных моделей деталей и конструкций
- 60. Требования по оформлению конструкторской документации. Оформление результатов расчетов, проведенных на ПЭВМ

Критерии оценивания контрольных заданий для устного опроса

«Отпично»: ставится студенту за правильный, полный и глубокий ответ на вопросы занятия и активное участие в дискуссии; ответ студента на вопросы должен быть полным и развернутым, продемонстрировать отличное знание студентом материала учебника и дополнительной литературы;

«хорошо»: ставится студенту за правильный ответ на вопрос семинарского занятия и участие в дискуссии; ответ студента на вопрос должен быть полным и продемонстрировать достаточное знание студентом материала учебника и дополнительной литературы; допускается неполный ответ по одному из дополнительных вопросов;

«удовлетворительно»: ставится студенту за не совсем правильный или не полный ответ на вопрос преподавателя, пассивное участие в работе на занятии;

«неудовлетворительно»: ставится всем участникам группы или одному из них в случае ее (его, их) неготовности к ответу на занятии.

Примеры ситуационных задач:

- 1. Используя возможности системы КОМПАС, построить комплексный чертеж призмы усеченной проецирующей плоскостью. Определить натуральную величину фигуры сечения и построить развертку этих поверхностей
- 2. Используя возможности системы КОМПАС, построить комплексный чертеж конуса усеченной проецирующей плоскостью. Определить натуральную величину фигуры сечения и построить развертку этих поверхностей.
- 3. Используя возможности системы КОМПАС, построить горизонтальную и фронтальную проекции конуса и сферы. Определить линию пересечения данных фигур.

- 4. Используя возможности системы КОМПАС, выполнить изображения главного вида и вида сверху детали «основание». Построить изображение сложного ступенчатого разреза А-А по данной секущей плоскости. Нанести размеры и сделать обозначения.
- 5. Используя возможности системы КОМПАС, выполнить изображения главного вида и вида слева детали «крышка». Построить изображение сложного ломаного разреза А-А по данной секущей плоскости. Нанести размеры и сделать обозначения.
- 6. Используя возможности системы КОМПАС, выполнить изображения главного вида детали «вал» по его наглядному изображению. Построить изображение сечений А-А, Б-Б и В-В по данным секущим плоскостям. Нанести размеры и сделать обозначения.
- 7. Используя возможности системы APM WinMachine, определить основные геометрические параметры цилиндрической косозубой передачи.
- 8. Используя возможности системы APM WinMachine, определить опасные сечения детали «вал» с заданными геометрическими размерами и нагружением.
- 9. Используя возможности системы APM WinMachine, оценить работоспособность радиально-упорного шарикового подшипника.
- 10. Используя возможности системы APM WinMachine, рассчитать количество, геометрию и силу затяжки болтов фланцевого соединения трубопровода.

Критерии оценивания ситуационных задач:

«Отлично»: студент обладает системными теоретическими знаниями (знает методику выполнения практических навыков, показания и противопоказания, возможные осложнения, нормативы и проч.), без ошибок самостоятельно демонстрирует выполнение практических умений;

«хорошо»: студент обладает теоретическими знаниями (знает методику выполнения практических навыков, показания и противопоказания, возможные осложнения, нормативы и проч.), самостоятельно демонстрирует выполнение практических умений, допуская некоторые неточности (малосущественные ошибки), которые самостоятельно обнаруживает и быстро исправляет;

«удовлетворительно»: студент обладает удовлетворительными теоретическими знаниями (знает основные положения методики выполнения практических навыков, показания и противопоказания, возможные осложнения, нормативы и проч.), демонстрирует выполнение практических умений, допуская некоторые ошибки, которые может исправить при коррекции их преподавателем;

«неудовлетворительно»: студент не обладает достаточным уровнем теоретических знаний (не знает методики выполнения практических навыков, показаний и противопоказаний, возможных осложнений, нормативы и проч.) и/или не может самостоятельно продемонстрировать практические умения или выполняет их, допуская грубые ошибки.

Второй этап (продвинутый уровень)

УМЕТЬ (применять, анализировать, оценивать, синтезировать): уметь использовать изученный материал в конкретных условиях и в новых ситуациях; осуществлять декомпозицию объекта на отдельные элементы и описывать то, как они соотносятся с целым, выявлять структуру объекта изучения;

оценивать значение того или иного материала — научно-технической информации, исследовательских данных и т. д.; комбинировать элементы так, чтобы получить целое, обладающее новизной

Контрольные задания для устного опроса:

- 1. Сохранение работы. Получение твердой копии чертежа.
- 2. Графические примитивы в Компас и команды их создания.
- 3. Графический примитив точка, дуга, полилиния, мультилиния.
- 4. Графический примитив эллипс, кольцо.
- 5. Графический примитив многоугольник, сплайн- кривая.
- 6. Графический примитив эскиз, фигура.
- 7. Графический примитив полоса, область.
- 8. Графический примитив прямая и луч.
- 9. Графический примитив текст, блок.
- 10. Внешние ссылки.
- 11. Свойства примитивов.
- 12. Разделение чертежа по слоям.
- 13. Использование цвета и типов линий.
- 14. Изменение порядка черчения объектов.
- 15. Команды оформления чертежей . Штриховка.
- 16. Команды оформления чертежей Нанесение размеров.
- 17. Команды отрисовки размеров.
- 18. Команды размерных стилей.
- 19. Команды редактирования размеров.
- 20. Нанесение допусков отклонений формы и расположения поверхностей.
- 21. Редактирование чертежей.
- 22. Работа с поименованными объектами.
- 23. Использование групп.
- 24. Расчленение объектов.
- 25. Удаление и восстановление объектов.
- 26. Перемещение набора объектов.
- 27. Копирование набора объектов.
- 28. Поворот набора объектов.

Критерии оценивания контрольных заданий для устного опроса

«Отлично»: ставится студенту за правильный, полный и глубокий ответ на вопросы занятия и активное участие в дискуссии; ответ студента на вопросы должен быть полным и развернутым, продемонстрировать отличное знание студентом материала учебника и дополнительной литературы;

«хорошо»: ставится студенту за правильный ответ на вопрос семинарского занятия и участие в дискуссии; ответ студента на вопрос должен быть полным и продемонстрировать достаточное знание студентом материала учебника и дополнительной литературы; допускается неполный ответ по одному из дополнительных вопросов;

«удовлетворительно»: ставится студенту за не совсем правильный или не полный ответ на вопрос преподавателя, пассивное участие в работе на занятии;

«неудовлетворительно»: ставится всем участникам группы или одному из них в случае ее (его, их) неготовности к ответу на занятии.

Примеры ситуационных задач:

- 1. Составить расчетную модель конструкции (например: поршень, поршневой палец, рама сеялки, лапа культиватора)
- 2. Предложить расчетную модель материала (например: станина грохота, высоковольтная мачта, туковый бак сеялки, долото сошника)
- 3. Определить главные критерии работоспособности деталей машин (например: трос подъемника, стойка культиваторной лапы, коленчатый вал двигателя)
- 4. Определить передаточные функции (кинематические характеристики) приводного механизма технологической машины (например, станка, грохота, механизма ДВС)
- 5. Проверить работоспособность существующей механической передачи
- 6. Проверить работоспособность имеющейся детали типа вал.
- 7. Установить влияние конструктивных элементов детали на прочность и жесткость.
- 8. Проверить работоспособность пружины (сжатия, растяжения, кручения)
- 9. Проверить работоспособность подшипников качения и скольжения для реальных условий работы
- 10. Определить поперечные сечения силовых элементов, составляющих раму машины (культиватора, сеялки, комбинированного почвообрабатывающего агрегата), обеспечивающие прочность при заданных нагрузках.

Критерии оценивания ситуационных задач:

«Отлично»: студент обладает системными теоретическими знаниями (знает методику выполнения практических навыков, показания и противопоказания, возможные осложнения, нормативы и проч.), без ошибок самостоятельно демонстрирует выполнение практических умений;

«хорошо»: студент обладает теоретическими знаниями (знает методику выполнения практических навыков, показания и противопоказания, возможные осложнения, нормативы и проч.), самостоятельно демонстрирует выполнение практических умений, допуская некоторые неточности (малосущественные ошибки), которые самостоятельно обнаруживает и быстро исправляет;

«удовлетворительно»: студент обладает удовлетворительными теоретическими знаниями (знает основные положения методики выполнения практических навыков, показания и противопоказания, возможные осложнения, нормативы и проч.), демонстрирует выполнение практических умений, допуская некоторые ошибки, которые может исправить при коррекции их преподавателем;

«неудовлетворительно»: студент не обладает достаточным уровнем теоретических знаний (не знает методики выполнения практических навыков, показаний и противопоказаний, возможных осложнений, нормативы и проч.) и/или не может самостоятельно продемонстрировать практические умения или выполняет их, допуская грубые ошибки.

Третий этап (высокий уровень)

ВЛАДЕТЬ наиболее общими, универсальными методами действий, познавательными, творческими, социально-личностными навыками.

Контрольные задания для устного опроса:

- 1. Масштабирования набора объектов.
- 2. Выравнивание объектов.
- 3. Зеркальное отображение набора объектов.
- 4. Рисование подобных объектов.
- 5. Повторение набора объектов
- 6. Редактирование чертежей. «Вытягивание» объектов.
- 7. Деление объекта на части.
- 8. Измерение объекта.
- 9. Рисование скруглений.
- 10. Вычерчивание фасок.
- 11. Редактирование полилиний, мультилиний, сплайнов, штриховки
- 12. Трехмерное моделирование.
- 13. Аксонометрические изображения трехмерных объектов
- 14. Поверхностные объекты и команды их редактирования точка, отрезок,
- 15. Поверхностные объекты и команды их редактирования точка трехмерные полилинии, пространственные грани,
- 16. Поверхностные объекты и команды их редактирования точка трехмерные элементарные поверхности и многоугольные сети
- 17. Твердотельные объекты и команды их редактирования.
- 18. Твердотельные примитивы «ящик».
- 19. Твердотельные примитивы «клин».
- 20. Твердотельные примитивы «конус».
- 21. Твердотельные примитивы «цилиндр».
- 22. Твердотельные примитивы «шар».
- 23. Твердотельные примитивы «тор».
- 24. Редактирование в трехмерном пространстве.
- 25. Вращение и выдавливание двухмерного объекта.
- 26. Объединение, вычитание, пересечение объектов
- 27. Формирование чертежей с использованием пространственного моделирования.
- 28. Создание твердотельной пространственной модели.
- 29. Формирование чертежа по пространственной модели
- 30. Создание чертежа по пространственной модели сприменением ассоциативных видов.

Критерии оценивания контрольных заданий для устного опроса

«Отпично»: ставится студенту за правильный, полный и глубокий ответ на вопросы занятия и активное участие в дискуссии; ответ студента на вопросы должен быть полным и развернутым, продемонстрировать отличное знание студентом материала учебника и дополнительной литературы;

«хорошо»: ставится студенту за правильный ответ на вопрос семинарского занятия и участие в дискуссии; ответ студента на вопрос должен быть полным и продемонстрировать достаточное знание студентом материала учебника и дополнительной литературы; допускается неполный ответ по одному из дополнительных вопросов;

«удовлетворительно»: ставится студенту за не совсем правильный или не полный ответ на вопрос преподавателя, пассивное участие в работе на занятии;

«неудовлетворительно»: ставится всем участникам группы или одному из них в случае ее (его, их) неготовности к ответу на занятии.

Примеры ситуационных задач:

- 1. Обосновать рациональную конструктивно-силовую схему конструкции детали типа вал с проверочным расчетом в соответствующем модуле пакета WinMachine
- 2. Обосновать рациональную конструктивно-силовую схему рамной конструкции с проверочным расчетом в соответствующем модуле пакета WinMachine
- 3. Обосновать рациональную конструктивно-силовую схему комбинированной конструкции с проверочным расчетом в соответствующем модуле пакета WinMachine
- 4. Предложить последовательность и схему расчета конструкции (например, сеялки, мостового крана, редуктора)
- 5. Определить опасное сечение вала и предложить конструктивные мероприятия по совершенствованию его формы
- 6. Обосновать выбор конструктивных параметров передачи вращательного движения
- 7. Спроектировать привод исполнительного механизма
- 8. Проанализировать напряженно-деформированное состояние детали (на примере деталей типа кронштейн, фланец, рычаг)
- 9. Предложить конструктивные мероприятия по совершенствованию конструкции детали с применением импорта сгенерированных моделей из пакета КОМПАС 3D
- 10. Разработать комбинированную конечно-элементную модель узла конструкции сельскохозяйственной машины.
- 11. Определить прогиб прямолинейной балки заданного сечения под действием заданной нагрузки. Обеспечить прочность конструкции подбором формы сечения
- 12. Выполнить проверочный расчет заданной червячной передачи Определить предельный крутящий момент, передаваемый этой передачей.
- 13. Выполнить проектировочный расчет цилиндрической косозубой передачи по заданному передаваемому крутящему моменту и передаточному отношению
- 14. Проверить устойчивость полой стальной штанги ГРМ ДВС длиной l, если наружный диаметр d_{t} , а внутренний d_{t} . Нагрузка на штангу F. Рекомендуемый коэффициент запаса устойчивости задан.
- 15. Построить эпюры внутренних силовых факторов для заданной конструкции вала и определить его работоспособность
- 16. Установить потребное усилие затяжки заданного болтового соединения фланцев трубопровода
- 17. Спроектировать рядный трехступенчатый редуктор для передачи требуемого крутящего момента с заданным передаточным отношением
- 18. Определить напряженно-деформированное состояние коленчатого и распределительного валов
- 19. Построить эпюры внутренних силовых факторов для заданной конструкции пространственной рамы и определить её работоспособность
- 20.Проверить прочность стальной двутавровой балки, жестко защемленной с двух концов, нагруженной двумя противоположно-направленными силами F_1 и F_2 , приложенными в концевом и среднем сечении. Установить собственные частоты конструкции

Критерии оценивания ситуационных задач:

«Отлично»: студент обладает системными теоретическими знаниями (знает методику выполнения практических навыков, показания и противопоказания, возможные осложнения, нормативы и проч.), без ошибок самостоятельно демонстрирует выполнение практических умений;

«хорошо»: студент обладает теоретическими знаниями (знает методику выполнения практических навыков, показания и противопоказания, возможные осложнения, нормативы и проч.), самостоятельно демонстрирует выполнение практических умений, допуская некоторые неточности (малосущественные ошибки), которые самостоятельно обнаруживает и быстро исправляет;

«удовлетворительно»: студент обладает удовлетворительными теоретическими знаниями (знает основные положения методики выполнения практических навыков, показания и противопоказания, возможные осложнения, нормативы и проч.), демонстрирует выполнение практических умений, допуская некоторые ошибки, которые может исправить при коррекции их преподавателем;

«неудовлетворительно»: студент не обладает достаточным уровнем теоретических знаний (не знает методики выполнения практических навыков, показаний и противопоказаний, возможных осложнений, нормативы и проч.) и/или не может самостоятельно продемонстрировать практические умения или выполняет их, допуская грубые ошибки.

4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедура оценки знаний умений и навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, производится преподавателем в форме текущего контроля и промежуточной аттестации.

Для повышения эффективности текущего контроля и последующей промежуточной аттестации студентов осуществляется структурирование дисциплины на модули. Каждый модуль учебной дисциплины включает в себя изучение законченного раздела, части дисциплины.

Основными видами текущего контроля знаний, умений и навыков в течение каждого модуля учебной дисциплины являются *защиты пабораторных* работ.

Студент должен выполнить все контрольные мероприятия, предусмотренные в модуле учебной дисциплины к указанному сроку, после чего преподаватель проставляет балльные оценки, набранные студентом по результатам текущего контроля модуля учебной дисциплины.

Контрольное мероприятие считается выполненным, если за него студент получил оценку в баллах, не ниже минимальной оценки, установленной программой дисциплины по данному мероприятию.

Промежуточная аттестация обучающихся проводится в форме зачета.

Зачет проводится для оценки уровня усвоения обучающимся учебного материала лекционных курсов и лабораторно-практических занятий, а также самостоятельной работы. Оценка выставляется или по результатам учебной работы студента в течение семестра, или по итогам письменно-устного опроса,

или тестирования на последнем занятии. Для дисциплин и видов учебной работы студента, по которым формой итогового отчета является зачет, определена оценка «зачтено», «не зачтено».

Оценка «зачтено» ставится в том случае, если обучающийся:

- владеет знаниями, выделенными в качестве требований к знаниям обучающихся в области изучаемой дисциплины;
- демонстрирует глубину понимания учебного материала с логическим и аргументированным его изложением;
- владеет основным понятийно-категориальным аппаратом по дисциплине;
- демонстрирует практические умения и навыки в области исследовательской деятельности.

Оценка «не зачтено» ставится в том случае, если обучающийся:

- демонстрирует знания по изучаемой дисциплине, но отсутствует глубокое понимание сущности учебного материала;
- допускает ошибки в изложении фактических данных по существу материала, представляется неполный их объем;
 - демонстрирует недостаточную системность знаний;
- проявляет слабое знание понятийно-категориального аппарата по дисциплине;
- проявляет непрочность практических умений и навыков в области исследовательской деятельности.

В этом случае студент сдаёт зачёт в форме устных и письменных ответов на любые вопросы в пределах освоенной дисциплине.

Основным методом оценки знаний, умений и навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций является балльно-рейтинговая система, которая регламентируется Положением о балльно-рейтинговой системе оценки обучения в ФГБОУ ВО Белгородский ГАУ.

Основными видами поэтапного контроля результатов обучения студентов являются: рубежный рейтинг, творческий рейтинг, рейтинг личностных качеств, рейтинг сформированности прикладных практических требований, промежуточная аттестация.

Уровень развития компетенций оценивается с помощью рейтинговых баллов.

Рейтинги	Характеристика рейтингов	Максимум баллов
Рубежный	Отражает работу студента на протяжении всего периода изучения дисциплины. Определяется суммой баллов, которые студент получит по результатам изучения каждого модуля.	60
Творческий	Результат выполнения студентом индивидуального творческого задания различных уровней сложности, в томчисле, участие в различных конференциях и конкурсах на протяжении всего курса изучения дисциплины.	5

Рейтинг лич-	Оценка личностных качеств обучающихся, проявлен-	
ностных ка-	ных ими в процессе реализации дисциплины (модуля)	
честв	(дисциплинированность, посещаемость учебных заня-	10
	тий, сдача вовремя контрольных мероприятий, ответ-	
	ственность, инициатива и др.)	
Рейтинг сфор-	Оценка результата сформированности практических	
мированности	навыков по дисциплине (модулю), определяемый пре-	
прикладных	подавателем перед началом проведения промежуточной	+
практических	аттестации и оценивается как «зачтено» или «не за-	
требований	чтено».	
Промежуточ-	Является результатом аттестации на окончательном	
ная аттестация	этапе изучения дисциплины по итогам сдачи зачета. Отра-	
	жает уровень освоения информационно-теоретического	25
	компонента в целом и основ практической деятельности в	
	частности.	
Итоговый рей-	Определяется путём суммирования всех рейтингов	100
ТИНГ		100

Общий рейтинг по дисциплине складывается из рубежного, творческого, рейтинга личностных качеств, рейтинга сформированности прикладных практических требований, промежуточной аттестации (зачета).

Рубежный рейтинг – результат текущего контроля по каждому модулю дисциплины, проводимого с целью оценки уровня знаний, умений и навыков студента по результатам изучения модуля. Оптимальные формы и методы рубежного контроля: устные собеседования, письменные контрольные опросы, в т.ч. с использованием ПЭВМ и ТСО, результаты выполнения лабораторных и практических заданий. В качестве практических заданий могут выступать крупные части (этапы) курсовой работы или проекта, расчетно-графические задания, микропроекты и т.п.

Промежуточная аттестация — результат аттестации на окончательном этапе изучения дисциплины по итогам сдачи *зачета*, проводимого с целью проверки освоения информационно-теоретического компонента в целом и основ практической деятельности в частности. Оптимальные формы и методы выходного контроля: письменные экзаменационные или контрольные работы, индивидуальные собеседования.

Творческий рейтинг — составная часть общего рейтинга дисциплины, представляет собой результат выполнения студентом индивидуального творческого задания различных уровней сложности.

Рейтинг личностных качеств - оценка личностных качеств обучающихся, проявленных ими в процессе реализации дисциплины (модуля) (дисциплинированность, посещаемость учебных занятий, сдача вовремя контрольных мероприятий, ответственность, инициатива и др.

Рейтинг сформированности прикладных практических требований - оценка результата сформированности практических навыков по дисциплине (модулю), определяемый преподавателем перед началом проведения промежуточной аттестации и оценивается как «зачтено» или «не зачтено».

В рамках балльно-рейтинговой системы контроля успеваемости студентов, семестровая составляющая балльной оценки по дисциплине формируется при наборе заданной в программе дисциплины суммы баллов, получаемых студентом при текущем контроле в процессе освоения модулей учебной дисциплины в течение семестра.

Итоговая оценка /зачёта/ компетенций студента осуществляется путём автоматического перевода баллов общего рейтинга в стандартные оценки.

Максимальная сумма рейтинговых баллов по учебной дисциплине составляет 100 баллов.

Оценка «зачтено» ставится в том случае, если итоговый рейтинг студента составил 51 балл и более.

Оценка «не зачтено» ставится в том случае, если итоговый рейтинг студента составил менее 51 балла.