Документ подписан простой электронной подписью Информация о владельце:

ФИО: Алейник Станислав Николаевич

Должность: Ректор Ведеральное государственное бюджетное образовательное учреждение Уникальный программный ключ:

высшего образования

5258223550е Венторожений зтогудар отвенный атрарный университет имени В.Я.Горина»

Кафедра ЭОиЭТ в АПК

(наименование кафедры)

УТВЕРЖДЕН

на заседании кафедры

«08» <u>05</u> 2024 г., протокол № <u>(О</u>

Руководитель ОПОП

Богомолов С.С.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

ПО ПРОФЕССИОНАЛЬНОМУ МОДУЛЮ ПМ 02

Энергоснабжение сельскохозяйственных предприятий

(наименование профессионального модуля)

35.02.08 Электротехнические системы в агропромышленном комплексе (АПК)

(код и наименование направления подготовки)

техник

Квалификация (степень) выпускника

п. Майский 2024

Экспертное заключение

на фонд оценочных средств по профессиональному модулю ПМ.02 «Энергоснабжение сельскохозяйственных предприятий»

программы подготовки специалистов среднего звена (ППССЗ) по специальности СПО <u>35.02.08</u> <u>Электротехнические системы в агропромышленном комплексе (АПК)</u>

(код, наименование специальности)

Представленный фонд оценочных средств (ФОС) по **профессиональному модулю ПМ.02** «Энергоснабжение сельскохозяйственных предприятий» соответствует требованиям ФГОС СПО.

Предлагаемые составителями формы и средства промежуточного контроля соответствуют целям и задачам реализации программы подготовки специалистов среднего звена по специальности 35.02.08 Электротехнические системы в агропромышленном комплексе (АПК)

(код, наименование специальности)

Оценочные средства для промежуточной аттестации представлены в полном объеме.

Виды оценочных средств, включенные в представленный фонд, отвечают основным требованиям формирования ФОС.

Разработанный и представленный для экспертизы фонд оценочных средств рекомендуется к использованию в образовательном процессе.

Первый заместитель генерального директораглавный инженер ООО «Белгранкорм» «06» мая 2024 г.

Павлов С.И.

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

по профессиональному модулю $\underline{\Pi M.02}$ «Энергоснабжение сельскохозяйственных предприятий»

№ п/п	Контролируемые разделы (темы) профессионального модуля*	Код контролиру- емой компетен- ции (или ее ча- сти)	Наименование оценочного средства
	МДК 02.01. Энер	госнабжение предг	іриятий АПК
1	Тема 1.1. Основные сведения о системах электроснабжения объектов	OK 1; OK 2; OK 9; ПК 2.1; ПК 2.2	оценка результатов выполнения практических работ, реферат, до- клад, сообщение, портфолио.
2	Тема 1.2. Электрические нагрузки	ОК 1; ОК 2; ОК 9; ПК 2.1; ПК 2.2	оценка результатов выполнения практических работ, реферат, до- клад, сообщение, портфолио, рас- четно графическая работа, тест
3	Тема 1.3. Внутрицеховые электрические сети	OK 1; OK 2; OK 9; ПК 2.1; ПК 2.2	оценка результатов выполнения практических работ, реферат, доклад, сообщение, портфолио, расчетно графическая работа, тест
4	Тема 1.4. Расчет разомкнутых и замкнутых сетей	OK 1; OK 2; OK 9; ПК 2.1; ПК 2.2	оценка результатов выполнения практических работ, реферат, доклад, сообщение, портфолио, расчетно графическая работа, тест
5	Тема 1.5. Монтаж воздушных и кабельных линий электропередачи	OK 1; OK 2; OK 9; ПК 2.1; ПК 2.2	оценка результатов выполнения практических работ, реферат, доклад, сообщение, портфолио, расчетно графическая работа, тест
6	Тема 1.6. Монтаж трансформаторных подстанций	OK 1; OK 2; OK 9; ПК 2.1; ПК 2.2	оценка результатов выполнения практических работ, реферат, доклад, сообщение, портфолио, расчетно графическая работа, тест
7	Тема 1.7. Короткие замыкания в электрических установках	OK 1; OK 2; OK 9; ПК 2.1; ПК 2.2	оценка результатов выполнения практических работ, реферат, доклад, сообщение, портфолио, расчетно графическая работа, тест
8	Тема 1.8. Компенсация реактивных мощностей в системе электроснабжения	OK 1; OK 2; OK 9; ПК 2.1; ПК 2.2	оценка результатов выполнения практических работ, реферат, доклад, сообщение, портфолио, расчетно графическая работа, тест
9	Тема 1.9. Основы релейной защиты и автоматики	OK 1; OK 2; OK 9; ПК 2.1; ПК 2.2	оценка результатов выполнения практических работ, реферат, доклад, сообщение, портфолио, расчетно графическая работа, тест
МД	[К 02.02. Организация и планирова	ание бесперебойног АПК	о энергообеспечения предприятий
1	Тема 2.1. Организация эксплуатации электрооборудования электрических сетей	ОК 1; ОК 2; ОК 9; ПК 2.1; ПК 2.2	оценка результатов выполнения практических работ, реферат, доклад, сообщение, портфолио, расчетно графическая работа, тест

	Тема 2.2. Эксплуатация силовых	OK 1; OK 2;	оценка результатов выполнения
2	трансформаторов	OK 9;	практических работ, реферат, до-
_	Траноформаторов	ПК 2.1; ПК 2.2	клад, сообщение, портфолио, рас-
		111(2:1, 111(2:2	четно графическая работа, тест
	Тема 2.3. Эксплуатация	OK 1; OK 2;	оценка результатов выполнения
3	электрических	OK 9;	практических работ, реферат, до-
)	распределительных	ПК 2.1; ПК 2.2	клад, сообщение, портфолио, рас-
	устройств	1110 2.1, 1110 2.2	четно графическая работа, тест
	Тема 2.4. Эксплуатация вто-	OK 1; OK 2;	оценка результатов выполнения
4	ричных устройств	OK 9;	практических работ, реферат, до-
7	ри ных устроисть	ПК 2.1; ПК 2.2	клад, сообщение, портфолио, рас-
		1110 2.1, 1110 2.2	четно графическая работа, тест
	Тема 2.5. Эксплуатация воздуш-	OK 1; OK 2;	оценка результатов выполнения
5	ных и кабельных линий электро-	OK 9;	практических работ, реферат, до-
3	передачи	ПК 2.1; ПК 2.2	клад, сообщение, портфолио, рас-
	породи п	111(2:1, 111(2:2	четно графическая работа, тест
	Тема 2.6. Правила техники	OK 1; OK 2;	оценка результатов выполнения
	безопасности при	OK 9;	практических работ, реферат, до-
6	эксплуатации систем	ПК 2.1; ПК 2.2	клад, сообщение, портфолио, тест
	электроснабжения		,,,,,,
	сельскохозяйственных		
	предприятий		
8	Дифференцированный зачет по	OK 1; OK 2;	Вопросы к дифференцированному
	МДК 02.02 Организация и пла-	ОК 9;	зачету
	нирование бесперебойного	ПК 2.1; ПК 2.2	
	энергообеспечения предприя-		
	тий АПК		
9	Курсовая работа МДК 02.01	OK 1; OK 2;	Задания к курсовой работе
	Энергоснабжение предприятий	ОК 9;	
	АПК	ПК 2.1; ПК 2.2	
11	Зачет по производственной	ОК 1; ОК 2;	Ситуационные задачи и вопросы
	практике (по профилю специ-	OK 9;	
	альности)	ПК 2.1; ПК 2.2	
	Экзамен (квалификационный)	OK 1; OK 2;	билеты на экзамен (квалификаци-
12	по профессиональному модулю	OK 9;	онный)
		ПК 2.1; ПК 2.2	

Перечень оценочных средств

№ п/п	Наименование оценочного сред- ства	Краткая характеристика оценочного средства	Представление оценочного средства в фонде
1	2	3	4
1	Реферат	Продукт самостоятельной работы студента, представляющий собой краткое изложение в письменном виде полученных результатов теоретического анализа определенной научной (учебноисследовательской) темы, где автор раскрывает суть исследуемой проблемы, приводит различные точки зрения, а также собственные взгляды на нее.	Темы рефератов
2	Доклад, сообщение	Продукт самостоятельной работы студента, представляющий собой публичное выступление по представлению полученных результатов решения определенной учебно-практической, учебно-исследовательской или научной темы	Темы докладов, сообщений
3	Тест	Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося.	Фонд тестовых заданий
4	Портфолио	Целевая подборка работ студента, раскрывающая его индивидуальные образовательные достижения в одной или нескольких учебных дисциплинах.	Структура портфолио
5	Расчетно- графическая рабо- та	Средство проверки умений применять полученные знания по заранее определенной методике для решения задач или заданий по модулю или дисциплине в целом.	Комплект заданий для выполнения расчетнографической работы

Темы рефератов, докладов, сообщений

По дисциплине МДК.02.01 Энергоснабжение предприятий АПК и МДК 02.02 Организация и планирование бесперебойного энергообеспечения предприятий АПК

- 1. Производство, распределение и потребление электрической энергии.
- 2. Типы электростанций и подстанций.
- 3. Источники и схемы электроснабжения с/х потребителей.
- 4. Современное состояние электроснабжения предприятий и населенных пунктов.
- 5. Токопроводящие и изолирующие материалы.
- 6. Внутренние электропроводки, их виды и зависимость от типа помещения.
- 7. Плавкие предохранители, автоматы.
- 8. Неизолированные провода, применяемые в воздушных ЛЭП.
- 9. Изоляторы и арматура воздушных линий.
- 10. Конструкция и особенности выполнения воздушных линий.
- 11. Понятие о механических нагрузках на провода и изоляторы.
- 12. Принципы и виды короткого замыкания.
- 13. Устройство высоковольтной аппаратуры и приводов к ней.
- 14. Разъединители и выключатели нагрузки, высоковольтные предохранители.
- 15.Измерительные трансформаторы тока и напряжения, их устройство, типы, марки, назначение и область применения.
- 16. Резервные дизельные электростанции.
- 17. Требование к релейной защите. Схемы соединения трансформаторов тока и реле защиты
- 18.Источники оперативного тока.
- 19. Релейная защита линии, максимальная токовая защита.
- 20. Релейная защита трансформаторов. Защита трансформаторов предохранителями.
- 21. Назначение и основные функции автоматических устройств.
- 22. Автоматическое повторное включение (АПВ). Автоматическое включение резерва.
- 23.Виды устройства АВР и требования, предъявляемые к ним.
- 24. Меры безопасности при транспортировке оборудования и погрузочно-разгрузочных операциях.
- 25.С помощью какого устройства осуществляется подъем на опору необходимого инструмента, приспособлений и оснастки?
- 26.Область применения опор из композитных материалов?
- 27.Перечислите и опишите назначения основного оборудования, механизмов и приспособлений применяемых для раскатки провода под натяжением.
- 28. Назовите основные типы термоусаживаемых муфт и опишите их назначение.
- 29.Перечислите известные Вам способы соединения проводов и кабелей электропроводки.
- 30.Опишите особенности конструкции зажимов прокалывающего типа.
- 31. Как выполняют соединение проводов зажимами прокалывающего типа.
- 32. Укажите достоинства и недостатки соединения проводов прокалывающими зажимами.
- 33.Опишите порядок монтажа шинопровода.
- 34. Общие требования к конструкции и элементной базе воздушных линий.
- 35. Ввод воздушных и кабельных линий в эксплуатацию.
- 36. Техническое обслуживание воздушных и кабельных линий.
- 37. Защита отходящих воздушных линий.
- 38. Охрана воздушных и кабельных линий.
- 39. Правила безопасности при эксплуатации воздушных и кабельных линий до 1000 В.
- 40. Основные требования к РУ и задачи их эксплуатации.
- 41. Эксплуатация устройств релейной защиты и автоматики.
- 42. Техническое обслуживание элементной базы силового оборудования РУ.

- 43.Оперативные переключения в условиях напряжением выше 1000 В. Техническое обслуживание потребительских подстанций.
- 44. Эксплуатация заземляющих устройств.
- 45. Правила безопасности при эксплуатации РУ.
- 46.Правило эксплуатации и техническое обслуживание внутренних электропроводок.
- 47. Эксплуатация устройств заземления и зануления.
- 48. Эксплуатация устройств выравнивания потенциалов.

Критерии оценки:

- оценка «отлично» выставляется студенту, если реферат (доклад, сообщение) оформлен в соответствии с требованиями ЕСКД, полностью раскрывает описываемую тему, студент владеет информацией на высоком студенческом уровне, свободно делает доклад с презентацией в PowerPoint, способен сформулировать выводы и личные предложения, отвечает более чем на 80% вопросов преподавателя и студентов группы;
- оценка «хорошо» выставляется студенту, если реферат (доклад, сообщение) оформлен в соответствии с требованиями ЕСКД, полностью раскрывает описываемую тему, студент владеет информацией, свободно делает доклад с презентацией в PowerPoint, способен сформулировать выводы с помощью преподавателя и отвечает на 70-80% вопросов преподавателя и студентов группы;
- оценка «удовлетворительно» выставляется студенту, если реферат (доклад, сообщение) оформлен в соответствии с требованиями ЕСКД, полностью раскрывает описываемую тему, студент в целом владеет информацией, делает устный доклад без презентации, способен сформулировать выводы с помощью преподавателя и отвечает на 60-70% вопросов преподавателя или студентов группы.
- оценка «неудовлетворительно» выставляется студенту, если реферат (доклад, сообщение) оформлен без соответствия требованиям ЕСКД, не раскрывает описываемую тему, студент в целом не владеет информацией и затрудняется сделать устный доклад.

Портфолио

1 Название	портфолио		
2 Структур	а портфолио(инвар	риантные и вариативные части):	
2.1		• • • • • • • • • • • • • • • • • • • •	
2.2	•••••		
n			
Критерии (составлению порт		осодержатся в методическихрекомендациях г	IC
Составитель	(подпись)	И.О. Фамилия	
«»	20 г.		

Требования к портфолио

Тип портфолио – смешанный.

Общие компетенции, для проверки которых используется портфолио:

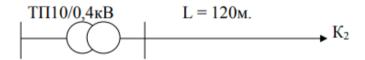
- OК 1. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам
- OК 2. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности
- OК 9. Пользоваться профессиональной документацией на государственном и иностранном языках

Портфолио оформляется студентом в течение всего периода освоения программы профессионального модуля, в том числе в период производственной практики.

Состав портфолио:

- Сведения об участии студента в олимпиадах и конкурсах профессионального мастерства, конференциях по профилю специальности (копии дипломов, грамот, свидетельств).
- Сведения об участии в профориентационной работе и представлении образовательного учреждения и специальности в школах города, района.
- Творческая работа с представлением презентаций специальности, профессии (неделя специальности, декада предметно-цикловой комиссии.
- План подготовки проектных работ, самостоятельной работы/ домашнего задания, изучения литературы/работы в библиотеке.
- Перечень специализированных программ и баз данных, использованных студентом при изучении содержания ПМ.

Показатели оценки презентации и защиты портфолио


Коды и наименования	Показатели оценки	Vavvaavv	Оценка
проверяемых компетенций	результата	Критерии	(да/нет)
ОК 1. Выбирать способы	-демонстрация интереса к	Достоверность	
решения задач профессио-	будущей профессии, участие	Аргументированность	
нальной деятельности	в конференциях, конкурсах,	Полнота	
применительно к различ-	олимпиадах согласно про-	Эстетическое оформление	
ным контекстам	филю изучаемых дисци-	Грамотность	
	плин, специальности.	Культура речи	
		Подтверждение докумен-	
		тальными источниками	
ОК 2. Использовать со-	- активное участие в жизни	Достоверность	
временные средства поис-	учебного заведения, в том	Аргументированность	
ка, анализа и интерпрета-	числе представление своей	Полнота	
ции информации, и ин-	будущей профессии и своего	Эстетическое оформление	
формационные технологии	учебного заведения, специ-	Грамотность	
для выполнения задач	альности на выставках, кон-	Культура речи	
профессиональной дея-	курсах.	Подтверждение докумен-	
тельности		тальными источниками	
ОК 9. Пользоваться про-	- применение найденных	Достоверность	
фессиональной докумен-	источников информации для	Аргументированность	
тацией на государствен-	решения профессиональных	Полнота	
ном и иностранном языках	задач;	Эстетическое оформление	
	- работа с информационно –	Грамотность	
	справочными системами по	Культура речи	
	профилю специальности;	Подтверждение докумен-	
		тальными источниками	

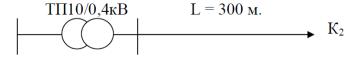
Расчетно-графическая работа


1 задание: Определить потери электроэнергии в линии за год. Среднеквадратичный ток линии Іср.кв= 42 A; ВЛ 0,38 кВ выполнена проводом AC50; длина линии 250 метров.

2 задание: Определить годовые потери электроэнергии в трансформаторе потребительской подстанции напряжением 10/0,4 кВ, если Sh.тр.=400 кВА, Pmax=300 кВт; соѕ ϕ =0,87; годовое потребление электроэнергии Wa=924*103 кВт*ч.

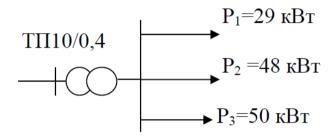
3 задание: Определить токи короткого замыкания на шинах напряжением 0.4 kB и в точке K2. ВЛ 0.38 кВ выполнена проводом A-35. Данные: Sh.т .= 40 кBA; Uк = 4.5 %; Xo=0.35 Om/км; Ro=0.85 Om/км.

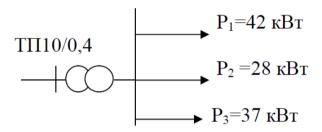
4 задание: Определить токи короткого замыкания на шинах напряжением 0,4кВ и в точке K2. ВЛ 0,38 кВ выполнена проводом AC-95. Данные: Sh.t.=400 кВA; $U\kappa=4,5$ %; Xo=0,35 Om/km; Ro=0,31 Om/km.


5 задание: Определить токи короткого замыкания на шинах напряжением 0,4кВ и в точке K_2 . ВЛ 0,38 кВ выполнена проводом марки AC-50. Данные: $S_{\text{H.T.}}$ = 250кВА; $U_{\text{к}}$ = 4,5 %; X_0 =0,38 Ом/км; R_0 =0,6 Ом/км.

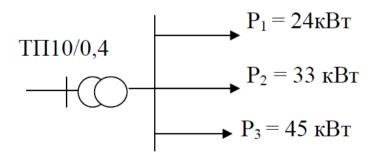
ТП10/0,4кВ
$$L = 100 \text{ м.}$$

6 задание: Определить токи короткого замыкания на шинах напряжением 0,4кВ и в точке К2. ВЛ 0,38 кВ выполнена проводом марки АС-70. Данные: Sh.т. = 160кВА; Uк = 4,5 %; Xo = 0,35 Ом/км; Ro = 0,43 Ом/км.


7 задание: Определить токи короткого замыкания на шинах напряжением 0,4кВ и в точке K_2 . ВЛ 0,38 кВ выполнена проводом AC50. Данные: $S_{\text{н.т.}}$ = 100кВА; $U_{\text{к}}$ = 4,5 %; X_0 = 0,35 Ом/км; R_0 = 0,6 Ом/км.


8 задание: Определить полную мощность на шинах 0,4кВ. Выбрать мощность силового трансформатора и защиту линий.

ТП10/0,4
$$P_1$$
=20кВт P_2 =18кВт P_3 =27кВт


9 задание: Определить полную мощность на шинах 0,4кВ. Выбрать мощность силового трансформатора и защиту линий.

10 задание. Определить полную мощность на шинах 0,4кВ. Выбрать мощность силового трансформатора и защиту линий.

11 задание: Определить полную мощность на шинах 0,4 кВ. Выбрать мощность силового трансформатора и защиту линий.

Критерии оценки:

- оценка «отлично» выставляется студенту, если составлен правильный алгоритм решения задачи, задача решена верно(в выборе формул и решении нет ошибок и получен верный ответ), пояснительная записка к задаче и ее графическая часть

оформлены в соответствии с ЕСКД, студент владеет информацией, свободно поясняет ход решения, способен сделать правильные выводы.

- оценка «хорошо» выставляется студенту, если составлен правильный алгоритм решения задачи, в логическом рассуждении и решении нет существенных ошибок; правильно сделан выбор формул для решения; есть объяснение решения, но задача решена нерациональным способом или допущено не более двух несущественных ошибок, получен верный ответ. пояснительная записка к задаче и ее графическая часть оформлены в соответствии с ЕСКД, студент владеет информацией, свободно поясняет ход решения, способен сделать правильные выводы.
- оценка «удовлетворительно» выставляется студенту, если задание понято правильно, в логическом рассуждении нет существенных ошибок, но допущены существенные ошибки в выборе формул или в математических расчетах; задача решена не полностью или в общем виде, но результаты оформлены в соответствии с ЕСКД.
- оценка «неудовлетворительно» выставляется студенту, если задание не понято, есть существенные ошибки в логическом рассуждении, задача не решена.

Фонд тестовых заданий

по профессиональному модулю ПМ-2 Энергоснабжение сельскохозяйственных предприятий

1) Что такое стрела провеса провода?

- 1. Расстояние между проводами разных фаз воздушной линии электропередачи.
- 2. Расстояние от низшей точки провисания провода до земли.
- 3. Расстояние между прямой, соединяющей точки подвеса провода и низшей точкой его провисания.
- 4. Расстояние от крайнего провода линии до мнимой вертикальной плоскости, нормируемое Правилами охраны электрических сетей.
- 5. Расстояние между проводом и грозозащитным тросом.

2) Под термином «эксплуатация» понимается?

- 1. комплекс работ включающий в себя осмотры и межремонтное обслуживание.
- 2. комплекс работ для поддержания работоспособности.
- 3. стадия жизненного цикла оборудования, на которой реализуются, восстанавливаются его технические характеристики.
- 4. стадия осмотров и испытаний оборудования.
- 5. стадия оценивания оборудования целесообразности его ремонта.

3) Расшифруйте марку трансформатора ТРДН.

- 1. Трехобмоточный трансформатор, обмотка низшего напряжения расщеплена, охлаждение принудительное воздушное, наличие РПН.
- 2. Трехфазный трансформатор, обмотка низшего напряжения расщеплена, охлаждение принудительное воздушное, наличие РПН.
- 3. Трехфазный трансформатор, обмотка низшего напряжения расщеплена, охлаждение естественное масляное и принудительное воздушное, наличие РПН.
- 4. Трехфазный трансформатор, обмотка низшего напряжения расщеплена, охлаждение принудительное воздушное, наличие РПН.
- 5. Трехфазный трансформатор, охлаждение естественное масляное и принудительное воздушное, наличие РПН.

4) Каковы должны быть сопротивления повторных заземлений нулевого провода ВЛ?

- 1. Не менее 0,5 Ом.
- 2. Не менее 4 Ом.
- 3. Не менее 10 Ом.
- 4. Не менее 30 Ом.
- 5. Не менее 50 Ом.

5) Что такое коэффициент абсорбции изоляции?

- 1. Отношение сопротивлений изоляции, измеренных мегаомметром через 60 и 30 секунд.
- 2. Отношение сопротивлений изоляции, измеренных мегаомметром через 60 и 15 секунд.
- 3. Сопротивление изоляции, измеренное мегаомметром через 15 секунд.
- 4. Сопротивление изоляции, измеренное мегаомметром через 60 секунд.
- 5. Сопротивление изоляции, измеренное мегаомметром через 45 секунд.

6) Выберите основные операции, выполняемые при монтаже проводов.

- 1. Раскатка, натяжение, крепление проводов к изоляторам.
- 2. Раскатка, соединение, крепление проводов к изоляторам.
- 3. Соединение, натяжение, крепление проводов к изоляторам.
- 4. Раскатка, соединение, натяжение, крепление проводов к изоляторам.
- 5. Разгрузка, раскатка, натяжение, крепление проводов к изоляторам.

7) Какие кабельные муфты являются наиболее надежными?

- 1. Эпоксидные.
- 2. Термоусаживаемые.

- 3. Свинцовые.
- 4. Чугунные.
- 5. Стальные.

8) Трансформаторы какой мощности поставляются на место монтажа в полностью собранном виде?

- 1. До 1000 кВА.
- 2. До 1600 кВА.
- 3. До 2500 кВА.
- 4. До 4000 кВА.
- 5. До 6300 кВА.

9) Какова периодичность осмотров РУ?

- 1. На подстанциях с постоянным дежурством персонала -1 раз в сутки; без дежурного персонала не реже одного раза в год.
- 2. На подстанциях с постоянным дежурством персонала -1 раз в сутки; без дежурного персонала не реже одного раза в месяц.
- 3. На подстанциях с постоянным дежурством персонала -1 раз в сутки; без дежурного персонала не реже одного раза в квартал.
- 4. На подстанциях с постоянным дежурством персонала -1 раз в месяц; без дежурного персонала не реже одного раза в год.
- 5. На подстанциях с постоянным дежурством персонала -1 раз в неделю; без дежурного персонала не реже одного раза в месяц.

10) Что такое охранная зона ВЛ?

- 1. Расстояние между проводами разных фаз воздушной линии электропередачи.
- 2. Минимально допустимое расстояние от низшей точки провисания провода до земли.
- 3. Расстояние между прямой, соединяющей точки подвеса провода и низшей точкой его провисания.
- 4. Расстояние от крайнего провода линии до мнимой вертикальной плоскости, нормируемое Правилами охраны электрических сетей.
- 5. Расстояние между проводом и грозозащитным тросом.

11) Как выполняются соединения проводов сечением до 185 мм²?

- 1. Овальными соединителями.
- 2. Сваркой.
- 3. Пайкой.
- 4. Прессуемыми соединителями.
- 5. Болтовыми соединителями.

12) Последняя стадия эксплуатации оборудования?

- 1. Текущий ремонт.
- 2. Капитальный ремонт.
- 3. Реконструкция.
- 4. Утилизация.
- 5. Техническое перевооружение.

13) Какова периодичность осмотра КЛ?

- 1. Не реже одного раза в 6 месяцев для КЛ, проложенных открыто; не реже одного раза в 3 месяца для КЛ, проложенных в земле.
- 2. Не реже одного раза в 3 месяца для КЛ, проложенных открыто. не реже одного раза в 6 месяцев для КЛ, проложенных в земле.
- 3. Не реже одного раза в 6 месяцев для КЛ, проложенных открыто. не реже одного раза в 6 месяцев для КЛ, проложенных в земле.
- 4. Не реже одного раза в 3 месяца для КЛ, проложенных открыто. не реже одного раза в 3 месяцев для КЛ, проложенных в земле.
- 5. Не реже одного раза в год для КЛ, проложенных открыто. не реже одного раза в 6 месяцев для КЛ, проложенных в земле.

14) Какая допускается температура наиболее нагретой точки обмотки присистематической перегрузке распределительных трансформаторов?

- 1. При систематической перегрузке 140°С,.
- 2. При систематической перегрузке 150°C.
- 3. При систематической перегрузке 160°C.
- 4. При систематической перегрузке 170°С.
- 5. При систематической перегрузке 180°С.

15) Персонал, осуществляющий техническую эксплуатацию электрооборудования, подразделяется?

- 1. технический, оперативный и ремонтный
- 2. административно-технический, ремонтный
- 3. технический, оперативный и эксплуатационный
- 4. административно-технический, оперативный и ремонтный
- 5. административно-оперативный и ремонтный

16) Допускается ли размыкание вторичной обмотки ТТ под нагрузкой?

- 1. Допускается.
- 2. Не допускается.
- 3. Допускается кратковременно.
- 4. Допускается только на время замены реле или измерительного прибора.
- 5. Допускается для ТТ с номинальным первичным током до 600 А.

17) Каково должно быть нормальное сопротивление изолятора в гирлянде?

- 1. Не менее 300 МОм.
- 2. Не менее 300 кОм.
- 3. Не менее 100 МОм.
- 4. Не менее 300 Ом.
- 5. Не менее 300 мОм.

18) Какие методы применяется для отыскания в кабелях однофазного замыкания на землю?

- 1. Емкостной, петлевой, индукционный.
- 2. Акустический, петлевой, импульсный.
- 3. Индукционный, импульсный, акустический.
- 4. Импульсный, петлевой, емкостной.
- 5. Петлевой, акустический, емкостной.

19) Какую роль в трансформаторе выполняет термосифонный фильтр?

- 1. Увеличивает к.п.д. трансформатора.
- 2. Поглощает влагу и продукты старения масла.
- 3. Охлаждает масло.
- 4. Защищает обмотки от витковых замыканий.
- 5. Обеспечивает герметичность трансформатора.

20) С какой целью снимается характеристика намагничивания ТТ?

- 1. Для проверки отсутствия (наличия) витковых замыканий.
- 2. Для проверки коэффициента трансформации.
- 3. Для проверки защитного заземления.
- 4. Для проверки полярности обмоток.
- 5. Для проверки увлажнения изоляции.

21) Какова периодичность ремонта ВЛ с металлическими и железобетонными опорами?

- 1. Не реже одного раза в 7 лет.
- 2. Не реже одного раза в 10 лет.
- 3. Не реже одного раза в 12 лет.
- 4. Не реже одного раза в 5 лет.
- 5. Не реже одного раза в 3 года.

22) Последняя стадия эксплуатации оборудования?

1. Текущий ремонт.

- 2. Капитальный ремонт.
- 3. Реконструкция.
- 4. Утилизация.
- 5. Техническое перевооружение.

23) Ремонтный цикл Трк?

- 1. интервал времени между двумя капитальными ремонтами оборудования
- 2. интервал времени между двумя текущими ремонтами оборудования
- 3. интервал времени между капитальным и текущим ремонтами оборудования
- 4. интервал времени между двумя техническими обслуживаниями оборудования
- 5. интервал времени между техническим ремонтом и утилизацией оборудования

24) Какова периодичность ремонта ВЛ с деревянными опорами?

- 1. Не реже одного раза в 7 лет.
- 2. Не реже одного раза в 10 лет.
- 3. Не реже одного раза в 12 лет.
- 4. Не реже одного раза в 5 лет.
- 5. Не реже одного раза в 3 года.

25) Каково предельно допустимое пробивное напряжение эксплуатационного трансформаторного масла оборудования напряжением 110 кВ?

- 1. 25 кВ.
- 2. 35 kB.
- 3. 45 kB.
- 4.55 kB.
- 5, 60 kB.

26) Какова периодичность осмотров ВЛ?

- 1. Не реже одного раза в год.
- 2. Не реже одного раза в три месяца.
- 3. Не реже одного раза в шесть месяцев.
- 4. Не реже одного раза в 5 лет.
- 5. Не реже одного раза в 10 лет.

27) Какие коммутационные аппараты обеспечивают видимый разрыв электрической цепи?

- 1. Силовой выключатель.
- 2. Разъединитель.
- 3. Плавкий предохранитель.
- 4. Автоматический выключатель.
- 5. Вакуумный выключатель.

28) Каково значение коэффициента абсорбции для нормальной изоляции?

- 1. Не менее 1,5.
- 2. Не менее 1,1.
- 3. Не менее 1,4.
- 4. Не менее 1,3.
- 5. Не менее 1,0.

29) Что характеризует кислотное число трансформаторного масла?

- 1. Количество КОН, мг, необходимое для нейтрализации кислот в 1 г масла.
- 2. Количество КОН, мг, необходимое для нейтрализации кислот в 1 кг масла.
- 3. Количество КОН, мг, необходимое для нейтрализации кислот в 1 мг масла.
- 4. Количество КОН, кг, необходимое для нейтрализации кислот в 1 кг масла.
- 5. Количество КОН, кг, необходимое для нейтрализации кислот в 1 г масла.

30) Какова предельно допустимая температура вспышки эксплуатационного трансформаторного масла?

- 1. 130°C.
- 2. 135°C.
- 3. 140°C.

- 4. 150°C.
- 5. 125°C.

31) Что такое разделка кабеля?

- 1. Ступенчатое удаление на определенной длине защитных покровов, брони, оболочки, экрана и изоляции
- 2. Снятие с кабеля наружного защитного покрова
- 3. Последовательное удаление без сдвига всех слоев кабеля.
- 4. Последовательное удаление всех слоев кабеля.
- 5. Последовательное удаление с некоторым сдвигом всех слоев кабеля.

32) Надежность является комплексным свойством оборудования, которое в зависимости от назначения и условий эксплуатации характеризуется?

- 1. Вероятностью безотказной работы, долговечностью и сохраняемостью.
- 2. Безотказностью, долговечностью, сохраняемостью и ремонтопригодностью.
- 3. Вероятностью безотказной работы, долговечностью и ремонтопригодностью.
- 4. Безотказностью, ремонтопригодностью и сохраняемостью.
- 5. Интенсивностью отказов, долговечностью, сохраняемостью и ремонтопригодностью.

33) Какое допускается переходное сопротивление болтовых контактов заземляющих устройств ЗУ?

- 1. Не менее 1 Ом.
- 2. Не менее 0,5 Ом.
- 3. Не менее 0,05 Ом.
- 4. Не менее 1 кОм.
- 5. Не менее 1 МОм.

34) К какому изолятору в гирлянде приложено наибольшее напряжение?

- 1. К первому со стороны опоры.
- 2. К первому со стороны провода.
- 3. К среднему.
- 4. Напряжение распределяется равномерно по всем изоляторам в гирлянде.
- 5. К первому со стороны опоры и к первому со стороны провода.

35) Какова периодичность осмотров ВЛ?

- 1. Не реже одного раза в год.
- 2. Не реже одного раза в три месяца.
- 3. Не реже одного раза в шесть месяцев.
- 4. Не реже одного раза в 5 лет.
- 5. Не реже одного раза в 10 лет.

36) Какие методы применяется для отыскания в кабелях многофазных замыканий?

- 1. Емкостной, индукционный, импульсный.
- 2. Акустический, индукционный, импульсный.
- 3. Петлевой, акустический, емкостной.
- 4. Емкостной, петлевой, индукционный.
- 5. Петлевой и емкостной.

37) Какое повышение напряжения длительно допустимо для трансформатора без каких-либо ограничений?

- 1. Ha 20%.
- 2. Ha 30%.
- 3. Ha 40%.
- 4. Ha 15%.
- 5. Ha 10%.

38) Каково должно быть сопротивление заземляющего устройства ЗУ в электроустановке напряжением 110 кВ?

- 1. Не менее 0.5 Ом.
- 2. Не менее 4 Ом.

- 3. Не менее 10 Ом.
- 4. Не менее 30 Ом.
- Не менее 1 Ом.

39) При какой температуре на проводах ВЛ происходит гололедообразование?

- 1.0 °C.
- 2. -5 °C
- 3. -10 °C
- 4. При низшей температуре.
- 5. -40 °C

40) Ремонтный цикл Трк?

- 1. интервал времени между двумя капитальными ремонтами оборудования
- 2. интервал времени между двумя текущими ремонтами оборудования
- 3. интервал времени между капитальным и текущим ремонтами оборудования
- 4. интервал времени между двумя техническими обслуживаниями оборудования
- 5. интервал времени между техническим ремонтом и утилизацией оборудования

41) Каким прибором измеряется сопротивление изоляции кабеля?

- 1. Омметром.
- 2. Мегаомметром.
- 3. Тестером.
- 4. Тепловизором.
- 5. Высоковольтным мостом.

42) Периодичность ремонта силового трансформатора 10/04кВ?

- 1. Текущий через 1 года, капитальный через 3 года.
- 2. Текущий через 2 года, капитальный через 3 года.
- 3. Текущий через 3 года, капитальный через 2 года.
- 4. Текущий через 2 года, капитальный через 5 года.
- 5. Текущий через 3 года, капитальный через 6 года.

43) С какой целью заземляются вторичные обмотки ТТ и ТН?

- 1. Для повышения точности измерений тока и напряжения.
- 2. Для защиты ТТ и ТН от перенапряжений.
- 3. Для безопасности обслуживания персоналом.
- 4. Для контроля замыканий на землю в сети с изолированной нейтралью.
- 5. Для выравнивания потенциалов при замыкании на землю.

44) Диаметр здоровой части древесины (эквивалентный диаметр) определяется как

- 1. $d_3 = D b_{cp}$
- 2. $d_3 = D + 2b_{cp}$
- 3. $d = D / 2b_{cp}$
- 4. d = D * 2
- 5. $d_3 = D 2b_{cp}$

45) Как испытывается изоляция магнитопровода и вторичных цепей трансформатора?

- 1. Напряжением 10 кВ в течение 10 минут.
- 2. Напряжением 1 кВ в течение 10 минут.
- 3. Напряжением 1 кВ в течение 1 минуты.
- 4. Напряжением 10 кВ в течение 1 минуты.
- 5. Напряжением 10 кВ в течение 5 минут.

46) Какова периодичность ремонта ВЛ с деревянными опорами?

- 1. Не реже одного раза в 7 лет.
- 2. Не реже одного раза в 10 лет.
- 3. Не реже одного раза в 12 лет.
- 4. Не реже одного раза в 5 лет.
- 5. Не реже одного раза в 3 года.

47) К периодическим осмотрам относятся?

- 1. Верховые и контрольные
- 2. Дневные, ночные, верховые и контрольные
- 3. Ночные и контрольные
- 4. Дневные и контрольные
- 5. Дневные и ночные.

48) Диаметр здоровой части древесины (эквивалентный диаметр) определяется как

- 1. $d_3 = D b_{cp}$
- 2. $d_3 = D + 2b_{cp}$
- 3. $d = D / 2b_{cp}$
- 4. $d_3 = D 2b_{cp}$
- 5. d = D * 2

49) Что такое стрела провеса провода?

- 1. Расстояние между проводами разных фаз воздушной линии электропередачи.
- 2. Расстояние от низшей точки провисания провода до земли.
- 3. Расстояние между прямой, соединяющей точки подвеса провода и низшей точкой его провисания.
- 4. Расстояние от крайнего провода линии до мнимой вертикальной плоскости, нормируемое Правилами охраны электрических сетей.
- 5. Расстояние между проводом и грозозащитным тросом.

50) Расшифруйте марку трансформатора ТРДН.

- 1. Трехобмоточный трансформатор, обмотка низшего напряжения расщеплена, охлаждение принудительное воздушное, наличие РПН.
- 2. Трехфазный трансформатор, обмотка низшего напряжения расщеплена, охлаждение принудительное воздушное, наличие РПН.
- 3. Трехфазный трансформатор, обмотка низшего напряжения расщеплена, охлаждение естественное масляное и принудительное воздушное, наличие РПН.
- 4. Трехфазный трансформатор, обмотка низшего напряжения расщеплена, охлаждение принудительное воздушное, наличие РПН.
- 5. Трехфазный трансформатор, охлаждение естественное масляное и принудительное воздушное, наличие РПН.

51) Выберите основные операции, выполняемые при монтаже проводов.

- 1. Раскатка, натяжение, крепление проводов к изоляторам.
- 2. Раскатка, соединение, крепление проводов к изоляторам.
- 3. Соединение, натяжение, крепление проводов к изоляторам.
- 4. Раскатка, соединение, натяжение, крепление проводов к изоляторам.
- 5. Разгрузка, раскатка, натяжение, крепление проводов к изоляторам.

52) Какие кабельные муфты являются наиболее надежными?

- 1. Эпоксидные.
- 2. Термоусаживаемые.
- 3. Свинцовые.
- 4. Чугунные.
- 5. Стальные.

53) На железобетонных опорах допускаются раковины и выбоины размером?

- 1. не более 5 мм (по глубине, ширине и длине) и числом не более двух на 1 м длины
- 2. не более 10 мм (по глубине, ширине и длине) и числом не более двух на 1 м длины
- 3. не более 5 мм (по глубине, ширине и длине) и числом не более двух на 1 м длины
- 4. не более 15 мм (по глубине, ширине и длине) и числом не более двух на 1 м длины
- 5. не более 10 мм (по глубине, ширине и длине) и числом не более двух на 2 м длины

54) Какова периодичность осмотров РУ?

1. На подстанциях с постоянным дежурством персонала -1 раз в сутки; без дежурного персонала не реже одного раза в год.

- 2. На подстанциях с постоянным дежурством персонала -1 раз в сутки; без дежурного персонала не реже одного раза в месяц.
- 3. На подстанциях с постоянным дежурством персонала 1 раз в сутки; без дежурного персонала не реже одного раза в квартал.
- 4. На подстанциях с постоянным дежурством персонала -1 раз в месяц; без дежурного персонала не реже одного раза в год.
- 5. На подстанциях с постоянным дежурством персонала -1 раз в неделю; без дежурного персонала не реже одного раза в месяц.

55) Надежность является комплексным свойством оборудования, которое в зависимости от назначения и условий эксплуатации характеризуется?

- 1. Вероятностью безотказной работы, долговечностью и сохраняемостью.
- 2. Безотказностью, долговечностью, сохраняемостью и ремонтопригодностью.
- 3. Вероятностью безотказной работы, долговечностью и ремонтопригодностью.
- 4. Безотказностью, ремонтопригодностью и сохраняемостью.
- 5. Интенсивностью отказов, долговечностью, сохраняемостью и ремонтопригодностью.

56) Персонал, осуществляющий техническую эксплуатацию электрооборудования, подразделяется?

- 1. технический, оперативный и ремонтный
- 2. административно-технический, ремонтный
- 3. технический, оперативный и эксплуатационный
- 4. административно-технический, оперативный и ремонтный
- 5. административно-оперативный и ремонтный

57) При оценке состояния проводов, изоляторов, арматуры и других элементов ВЛ, расположенных достаточно высоко, целесообразно использовать

- 1. Мегомметр.
- 2. Измерительная штанга.
- 3. Беспилотные аппараты.
- 4. Теодолит.
- 5. Бинокль.

58) Для планирования ремонтов ВЛ ведется следующая эксплуатационно-техническая документация:

- 1. Паспорта ВЛ, листки осмотров, ведомости измерений габаритов и стрел провеса проводов и тросов, ведомости измерений сопротивлений заземляющих устройств и журналы неисправностей ВЛ;
- 2. кабельный журнал, оперативный журнал, листки осмотра, ведомости показаний контрольноизмерительных приборов;
- 3. Правила технической эксплуатации электроустановок потребителей, правила устройства электроустановок, нормы испытаний электрооборудования
- 4. Должностные инструкции, инструкции по охране труда;
- 5. Техническая документация по объекту, структурному подразделению (отделу, цеху, участку) и рабочему месту.

59) Функции трансформаторного масла?

- 1. Обеспечивает защиту от токов перегрузки.
- 2. Обеспечивает защиту от токов короткого замыкания.
- 3. Изолирует находящиеся под напряжением узлы активной части; охлаждает нагревающиеся при работе узлы активной части; предохраняет твердую изоляцию обмоток от увлажнения.
- 4. Для подогрева трансформатора.
- 5. Никакой функции оно не несет.

60) Испытания трансформатора под нагрузкой после капитального ремонта происходит 1. В течении 1 ч.

- 2. В течение 24 ч.
- 3. В течении 30 мин.

- 4. В течении 48 ч.
- 5. В течении 7 дней.

Критерии оценки тестовых заданий:

86-100% правильных ответов – отлично;

71-85% правильных ответов – хорошо;

51-70% правильных ответов – удовлетворительно;

ниже 51% - неудовлетворительно.

Перечень вопросов к дифференцированному зачету по МДК 02.02:

- 1 Общие сведения о линиях электропередач
- 2 Неизолированные провода и тросы ВЛ
- 3 Кабели и изолированные провода ЛЭП
- 4 Конструкция воздушных линий
- 5 Опоры воздушных линий
- 6 Изоляторы ВЛ и ТП
- 7 Конструктивные параметры ВЛ
- 8 Расположение проводов на опорах ВЛ
- 9 Разметка трасс ВЛ
- 10 Подготовка к монтажу ВЛ
- 11 Монтаж неизолированных проводов
- 12 Стрела провеса проводов ВЛ
- 13 Крепление неизолированных проводов
- 14 Монтаж изолированных проводов
- 15 Арматура СИП
- 16 Соединение проводов
- 17 Ответвления и пересечения воздушных линий
- 18 ВЛ в сельских населенных пунктах
- 19 Защита ВЛ от атмосферных перенапряжений
- 20 Заземление опор ВЛ
- 21 Безопасность при работе на опорах ВЛ
- 22 Эксплуатация ВЛ
- 23 Определение мест повреждения ВЛ
- 24 Ремонт воздушных линий
- 25 Ремонт ВЛИ 0,38 кВ
- 26 Проектирование ВЛЭ
- 27 Техника безопасности при эксплуатации ВЛ
- 28 Контроль качества работ

- 29 Технологический процесс производства и потребления электроэнергии
- 30 Назначение электрической подстанции
- 31 Структурная схема трансформаторной подстанции
- 32 Главные схемы соединения подстанций
- 33 Комплект оборудования трансформаторной подстанции
- 34 Структурная схема сельской трансформаторной подстанции
- 35 Главные схемы соединений сельских трансформаторных подстанций
- 36 Сельские трансформаторные подстанции 6 10/0,38 кВ
- 37 Схемы соединения шин
- 38 Главные схемы соединений РТП на напряжение 35 110 кВ
- 39 Главные схемы соединений ТП 10 кВ
- 40 Комплектная трансформаторная подстанция
- 41 КТП киоскового типа
- 42 Технические данные КТП
- 43 Подстанции в бетонном корпусе с внутренним коридором обслуживания
- 44 Подстанции в бетонном корпусе по специальным проектам
- 45 Подстанции в бетонном корпусе с наружным обслуживанием
- 46 Классификация распределительных устройств
- 47 КРУ на напряжение до 1000 В
- 48 КРУ на напряжение выше 1000 В
- 49 Состав ППР
- 50 Разработка ППР
- 51 Работа с технической документацией
- 52 Виды специальных работ на подстанциях
- 53 Порталы для ошиновки ОРУ
- 54 Стойки и порталы поджесткие и гибкие токопроводы
- 55 Подстанции малой мощности
- 56 Фундаменты мощных силовых трансформаторов
- 57 Подготовка трансформатора к монтажу
- 58 Контрольное включение трансформатора
- 59 Назначение заземляющих устройств
- 60 Конструктивные особенности заземляющих устройств
- 61 Монтаж заземляющих устройств
- 62 Особенности эксплуатации заземляющих устройств
- 63 Переносные защитные заземления
- 64 Мачтовые трансформаторные подстанции
- 65 КРУ внутренней установки
- 66 КРУ наружной установки
- 67 КТП внутренней установки
- 68 Пусконаладочные работы
- 69 Требования к охране труда и технике безопасности
- 70 Электробезопасность

Критерии оценки знаний студента на диф. зачете

- «отлично» заслуживает студент, показавший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины и их значение для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала;
- «хорошо» заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности;
- «удовлетворительно» заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя;
- «неудовлетворительно»- выставляется студенту, обнаружившему проблемы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» выставляется студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Тематика и задания к курсовой работе <u>МДК 02.02 Эксплуатация систем электро</u>снабжения сельскохозяйственных организаций

Примерная тематика курсовых работ

- 1. Определение мест повреждения на ВЛ.
- 2. Ввод воздушных и кабельных линий в эксплуатацию.
- **3.** Техническое обслуживание воздушных и кабельных линий, их осмотры, порядок проведения и оформления технической документации
- **4.** Проверки и испытания на воздушных и кабельных линиях; виды испытаний и оформление результатов испытаний.
- 5. Измерение сопротивления фаза ноль.
- 6. Охрана воздушных и кабельных линий.
- 7. Правила безопасности при эксплуатации воздушных линий напряжением до 1000B.
- **8.** Правила безопасности при эксплуатации кабельных линий напряжением до 1000B.
- 9. Капитальный ремонт воздушных линий.
- 10. Техническая документация на подготовку, проведение и завершение работ по техническому обслуживанию и ремонту электрических сетей.
- 11. Способы выявления мест повреждений кабельных линий, определение вида, зоны и места повреждения.
- 12. Выбор сечения и марки КЛ и ВЛ напряжением до 1000В
- 13. Резервные электростанции.
- 14. Ремонт воздушных линий напряжением до 1000 В.
- 15. Ремонт кабельных линий напряжением до 1000 В.
- 16. Вакуумные выключатели: конструкция, маркировка, условия выбора.
- 17. Автоматические выключатели на напряжение до 1кВ: конструкция, маркировка, условия выбора.
- 18. Разъединители: конструкция, маркировка, условия выбора.
- 19. Магнитные пускатели: конструкция, маркировка, условия выбора.
- 20. Трансформаторное масло: характеристика, способы восстановления его свойств.
- 21. Заземляющие устройства: конструкция, технические требования.
- **22.** Нагрузки и потери энергии в электрических сетях. Потери энергии в трансформаторах и проводах линии
- 23. Автоматическое включение резерва: виды, назначение, требования к устройствам АВР.
- **24.** Классификация потребителей по графикам нагрузки. Виды графиков нагрузки, их назначение.
- 25. Предохранители на напряжение до 1000: конструкция и назначение.
- 26. Контрольно-измерительные приборы: виды, назначение, область применения.
- 27. Категории надежности электроснабжения: виды, характеристика, обеспечение надежности электроснабжения.
- **28.** Комплектные трансформаторные подстанции: назначение, устройство.

- 29. Автоматическое повторное включение. Требования к АПВ. Виды АПВ.
- 30. Защита электроустановок от атмосферных перенапряжений.
- 31. Устройство молниеотвода. Расчет защитной зоны.
- **32.** Регулирование напряжения в электрических сетях: способы, достоинства и недостатки.
- 33. Изоляторы для электрических установок: виды, конструкция.
- 34. Районные трансформаторные подстанции: назначение, конструкция.
- 35. Релейная защита: назначение, устройство, требования.
- 36. Классификация реле: виды, конструкция, принцип работы.
- 37. Методы и способы определения электрических нагрузок
- 38. Компенсация реактивной мощности.
- 39. Устройства компенсации реактивной мощности: конструкция, маркировка, условия выбора
- 40. Самонесущий изолированный провод СИП, конструкция, требования, достоинства и недостатки
- 41. Режимы электрических сетей и их параметры
- 42. Основное электрооборудование электрических подстанций
- 43. Режимы нейтрали электрических сетей
- 44. Короткие замыкания в электрических сетях.

Задание на курсовое проектирование по профессиональному модулю

Сведения об электрических нагрузках электроприемников представлены в таблицах 20.1- 20.9. Генпланы цехов с расстановкой электроприемников показаны на рисунках 20.1-20.9. При определении длин проводов необходимых для проверки выбранных сечений принять масштаб 1:10. Сведения для расчета заземляющих устройств представлены в таблице 20.10. При определении размеров цеха принять масштаб 1:10 или взять согласно данным таблицы 2.12.

Таблица 20.1 - Сведения об электрических нагрузках сборочного цеха

TT			Уста	новле	енная	мощ	ності	ь ЭП,	кВт		
Номер на	Наименование электроприемника				Номе	р вар	иант	a			
плане		1	2	3	4	5	6	7	8	9	10
1-5	Сварочный трансформатор ПВ=25%	20	30	12	16	24	31	28	22	2	10
6,7	Токарно-вертикальный полуавтомат	24	6	13	22	14	19	35	3,7	10	4
8,9	Токарно-винторезный	30	20	40	25	16	19	24	2,2	12	14
	станок		_								
10,28	Радиально-сверлильный	30	9	10	12	8	11	12	40	5	13
11	Пресс-ножницы	4,5	2	4	5	3	6	4	3	0,5	25
12	Пресс листогибочный	46	10	14	15	18	12	17	10	1,5	12
13-16	Сверлильно-фрезерный станок	16	12	13	25	34	26	22	6	19	5
17-20	Универсально-заточной	16	5	10	20	30	22	30	46	12	15

21,22	Намоточный станок	4,2	0,5	1	2	3	2,2	3	16	30	25
23,24	Намоточный станок	5,5	1,5	1,8	1,2	2	2,2	1,9	16	12	20
25,26	Термокамера	26	19	17	12	28	31	12	22	5	2
27,38	Кран-балка ПВ=40%	22	12	14	25	31	26	24	25	25	1,2
29,30	Фрезерный станок	26	30	20	40	25	16	30	12	40	12
31,32	Круглошлифовальный станок	18	12	23	15	24	16	22	5	15	25
33,34	Профильно-шлифовальный	2,6	5	1	2	3	2,2	3	15	2	40
35-37	Плоскошлифовальный станок	24	4	2	3	7	5	9	25	3	15
39-41	Строгальный станок	20	15	18	12	20	22	19	20	12	2
42-45	Вентилятор	22	17	12	28	31	17	22	2	28	3
46	Кран-балка ПВ=60%	37	2	5	10	7	13	9	7,2	10,9	22
47	Наждак	2,2	3	8	1	1,1	1,9	1,6	12	1	3,7
48,49	Сварочный трансформатор ПВ=25%	40	20	43	27	37	10	7	25	10	2,2
50	Компрессор	3	10	11	14	16	19	13	40	4	40
51	Сушильный шкаф	10	8	9	7	4	5	10	15	14	3
52	Нагревательная плита	6	5	8	6	10	9	7	2	13	10
53	Отопительный агрегат	2,2	0,5	1	2	3	2,2	3	3	2,5	6

Таблица 20.2 - Сведения об электрических нагрузках ремонтно -механического цеха

Номер на		Установленная мощность ЭП, кВт									
плане	Наименование электроприемника	Номер варианта									
		1	2	3	4	5	6	7	8	9	10
1-3,6	Вентилятор	10	15	20	34	28	40	20	7,5	12	4
4,5	Вентилятор	7,5	50	60	32	50	70	40	12	50	50
7-9	Универсально-заточное станок	17	10	9	14	8	16	7	4,5	6	30
10-12	Фрезерный станок	7,5	30	15	18	12	10	14	7,5	36	7
13,14	Фрезерный станок	12	14	12	8	10	12	8	12	10	20
15-18	Резьбонарезной станок	4,5	40	50	50	50	40	40	32	10	25
19-21	Резьбонарезной станок	7,5	2	6	4	8	10	7	7,5	13	13
22,23	Сварочный агрегат ПВ=60%	65	48	36	14	20	15	28	65	13	7,5
24,25	Преобразователь сварочный ПВ=40%	25	20	40	100	60	50	40	25	24	12
26-28	Пресс фрикционный	13	6	17	9	14	15	6	13	40	4,5
29-31	Ножницы отрезные	7,5	11	7	4	10	15	4	7,5	7	7,5
32-34	Пресс гидравлический	12	60	40	50	70	20	30	12	20	12
35,36	Точильный станок	4,5	40	70	30	34	19	25	4,5	7,5	12
37,38	Точильный станок	7,5	5	8	7	10	6	5	7,5	12	50
39-42	Шлифовальный станок	12	14	19	20	10	20	15	12	4,5	6
43-47	Токарно-винторезный	32	14	16	10	13	17	21	20	7,5	36
48-50	Токарно-винторезный	14	15	8	6	13	8	10	70	12	4
51-53	Радиально-сверлильный	18	40	30	50	24	15	20	34	32	50
54,55	Радиально-сверлильный	8	60	50	40	40	50	60	10	12	30
56-58	Вертикально-сверлильный	50	8	12	6	7	10	9	10	50	7
59	Вертикально-сверлильный	4	10	10	20	20	30	15	13	6	20
60	Кран балка ПВ=40%	14	6	8	7	6	14	12	13	36	10

Таблица 20.3 - Сведения об электрических нагрузках электроцеха

Номер на			У	стан	овлен	іная м	ощно	сть 3	ЭП, кІ	Зт	
_	Наименование электроприемника				Н	омер в	ариан	та			
плане		1	2	3	4	5	6	7	8	9	10
1	Горизонтально-фрезерный	10	16	4.2	1 1	20	4.0	4.0	4	5.0	3
1	станок	10	4,6	4,2	4,4	3,8	4,0	4,0	4	5,8	3
2	Вертикально-фрезерный	6	0,6	1,0	0,8	1,2	1,4	0,9	50	3,5	30
2	станок	0	0,0	1,0	0,8	1,2	1,4	0,9	30	3,3	30
3	Фрезерный станок	9	3,2	2,8	2,5	2,8	2,9	3	30	12	7,5
4	Токарный станок	7,5	6,5	6	5,5	6	5,5	5,4	7	10,5	10,5
5	Токарный станок	16	9,2	10,5	8	11,5	12	7,5	20	50	12
6,12	Наждак	3	4,5	4,1	4,1	3,8	5,5	4,1	4	12	8
7	Нарезной станок	12,5	13,8	14	23	17	19	15	50	35	3,5
8	Трубогиб	3	5	5,1	5,1	5,2	4,8	4,7	30	4,4	12
9,10	Электрокотел нагрева	10,5	28	22	27	32	31	24	7	18	10,5
9,10	воды	10,5	20	22	27	32	31	Z 4	/	10	10,5
11,33	Сверлильный станок	3	1,7	1,8	1,8	2,1	2,2	2,4	58	3	50
13,20,31	Испытательный стенд	30	60	59	58	32	43	27	3,5	30	30

Продолжение таблицы 20.3

продолжение таблицы 20.5												
Цомор на			У	стан	овлен	ная м	ощно	сть 🤇	ЭП, кЕ	Зт		
Номер на	Наименование электроприемника				Но	мер в	вариан	та				
плане		1	2	3	4	5	6	7	8	9	10	
14,21,32	Вытяжка	7,5	3,2	3,5	3,5	3,6	3,0	2,8	12	7,5	7	
15,22,34	Тепловая завеса ворот	10,5	14,5	8,5	12	17	4,2	5,1	10,5	10,5	20	
16,28	Вытяжка	12	10	10	10,5	12	8,5	9,0	50	12	58	
17,18,	Състояния и пр. 400/	20	50	45	50	44	42	39	12	40	35	
26,27	Сварочный тр-тор ПВ=40%	20	30	43	30	44	42	39	12	40	33	
19,23,29	Кран-балка ПВ=25%	4	14	12	12	14	15	16	35	50	12	
24	Гильотина	37	25	27,5	35	29	27,5	22	4,4	30	10,5	
25	Электропила	4	4,6	4,2	4,4	3,8	5	7	18	7	50	
28	Вытяжка	12	16	10	18	20	15	18	3	20	12	
30	Компрессор	15	32	28	25	28	29	30	30	58	35	

Таблица 20.4 - Сведения об электрических нагрузках литьевого цеха

Установленная мощность ЭП, кВт												
Номер на	Поличение знаключими		Уста	новле	енная	IOM F	цност	ьЭΠ	I, кВт			
1	Наименование электроприемни-	Номер варианта										
плане	ка	1	2	3	4	5	6	7	8	9	10	
1-5	Литьевая машина	33	16	15	14	13	17	18	12	16	14	
6	Литьевая машина	38	25	30	50	50	25	12	26	30	22	
7,8,13- 22	Литьевая машина	27	70	80	66	58	75	60	7	9	10	
9,10	Литьевая машина	34	55	60	52	48	40	35	30	50	33	
23	Литьевая машина	80,6	100	110	130	120	140	150	55	47	40	
24-27	Литьевая машина	85	15	12	10	14	9	8	14	10	12	
28-29	Литьевая машина	82	10	14	12	16	14	15	2	3	5	
30-32	Литьевая машина	12,5	40	45	50	52	48	58	9	7	11	
33,34	Литьевая машина	42	5	4	7	6	4,5	8	75	80	100	
35-38	Литьевая машина	13	50	60	30	44	42	55	60	55	50	
39-41	Литьевая машина	9,2	20	22	24	18	20	21	7	6	9	
42,44	Сушилка двухкамерная	1,7	3	4	2,8	5	2,4	6	10	9	8	

43,45	Обогрев сушилки	20	30	32	28	34	36	28	20	22	24
46,47	Дробилка ножевая	28	7	4	5	9	10	8	3	4	2,8
48	Смеситель	62	30	41	54	32	29	45	30	32	28
49	Экструдер	30	25	26	34	17	28	33	7	4	5
50,51	Вентилятор цеха	10	10	12	7,5	5,5	4	8	30	41	54
52	Скиповый подъемник	1,7	1,6	15	1,4	13	1,7	1,8	25	26	34
53-55	Вентилятор цеха	7	12,5	13	15	10	11	12	10	12	7,5
56-63	Вентилятор крышный	2	7	8	6,6	5,8	7,5	6	1,6	15	1,4
64,65	Кран-балка ПВ=40%	5,7	5,5	6	5,2	4,8	4	3,5	12,5	13	15
66	Вентилятор цеха	13	10	11	13	12	14	15	7,5	8	10
67,68	Вентилятор дробилок	7,5	15	12	10	14	9	8	60	55	50
69-72	Приточный вентилятор цеха	10	10	14	12	16	14	15	7	6	9
73-75	Приточный вентилятор бытовок	7	4	4,5	5	5,2	4,8	5,8	10	9	8

Таблица 20.5 - Сведения об электрических нагрузках цеха химического улавливания

	•	Установленная мощность ЭП, кВт											
Номер на плане	Наименование электро-	Номер варианта											
Планс	приемника	1	2	3	4	5	6	7	8	9	10		
1-4	Механизированный осветлитель	4	5	6	3	7	4,8	9	8	15	6		
5-17	Механизированный осветлитель		8	9	5	10	8	12	11	12	9		
18,19	Наждачный станок	15	17	14	13	20	21	19	15	17	20		
20	Токарный станок	5	6	4	7	8	3	2,8	5	6	8		
21,22	Сверлильные станки	10	12	7,5	5,5	4	8	10	10	12	4		
23	Кран-балка ПВ=40%	16	15	14	13	17	18	16	16	15	17		
24-28	Насос	82	50	60	75	85	49	73	82	50	85		
29-31	Насос	75	40	45	50	52	48	58	75	40	52		
32-33	Насос	42	50	43	27	60	45	38	42	50	60		
34,35	Центрифуга	30	50	60	30	44	42	55	30	50	20		
36	Центрифуга	9,2	20	22	24	18	20	21	9,2	20	20		
37	Вентилятор	50	70	82	75	62	52	68	50	52	70		
38-43	Насосы	132	126	180	106	120	220	114	132	220	126		
44	Тепловая завеса	45	28	15,5	14	17	18	19	45	18	28		
45-46	Вентиляторы	5,5	14	12	14	16	10	12	5,5	10	14		
47	Нагнетатель коксового газа	310	320	450	250	280	320	290	190	340	200		
48-50	Нагнетатели коксового газа	250	105	100	110	116	120	130	125	120	105		
51-52	Нагнетатели коксового газа	150	120	110	250	350	105	114	150	125	110		
53-58	Валоповороты	3	2,6	1,8	1,6	2,0	2,2	2,4	3	3,4	1,8		

Таблица 20.6 - Сведения об электрических нагрузках деревообрабатывающего цеха

Номор но				Установленная мощность ЭП, кВт										
Номер на	Наименование электроприемника			Номер варианта										
плане				2	3	4	5	6	7	8	9	10		
1,6,43,47	Вентилятор вытяжной		15	12	10	14	9	8	11	13	11	18		
2,5	Высокочастотная установка													
2,3	для сушки древесины		60	50	40	30	70	80	50	65	78	00		
3,4	Лесопильная рама		40	45	50	52	48	58	60	52	54	46		
7-10	Электрорубанок		5	4	7	6	4,5	8	5,5	9	6,2	7,5		
11-13	Циркулярно-маятниковая пила	50	60	30	44	42	55	52	62	48	40			
14-16	Циркулярная пила	20	22	24	18	20	21	25	28	19	27			
17,18	Механический колун	3	4	2,8	5	2,4	6	4,4	3	1,8	2,8			
19,20	Заточный станок	30	32	28	34	36	28	26	24	31	29			
23,43	Фуговальный станок	7	4	5	9	10	8	6	11	12	7			
21,22	Шипорезный станок		10	11	14	12	9	15	8	10	7	11		
24,25	Фрезерный станок		5	6	4	7	8	3	2,8	6	3,4	6		
26-29	Комбинированный	17	3	4	1	0	5 2,4	2.4	6	10	9	8		
20-29	деревообрабатывающий станок	1,7	3	4	2	,0	3	2,4	0	10	9	0		
30,31,41,42	Вертикально-сверлильный станок	20	30	32	2 2	8	34	36	28	20	22	24		
32,33	Стружечный транспортер	28	7	4	. 4	5	9	10	8	3	4	2,8		
34	Кран-балка на 3т	62	30	4	1 5	4	32	29	45	30	32	28		
35,36	Полировальный станок	30	25	20	5 3	4	17	28	33	7	4	5		
37,38	Круглошлифовальный станок	30	32	28	3	4	36	28	26	24	31	29		
39,40	Рейсмусный станок	7	4	5	Ģ)	10	8	6	11	12	7		
44-46	Электронагревательная плита	10	11	14	4 1	2	9	15	8	10	7	11		

Таблица 20.7 - Сведения об электрических нагрузках кузнечного цеха

Номер на	Наименование электроприемника		Установленная мощность ЭП, кВт									
-			Номер варианта									
плане		1	2	3	4	5	6	7	8	9	10	
1,2	Токарно-винторезный станок	16	11	14	15	10	12	17	13	18	19	
3-5	Токарно-четырехшпиндельный	20	15	25	28	30	29	31	24	26	28	
3-3	полуавтомат	20	13	23	20	30	29	31	24	20	20	
6,7	Резьбонарезный станок	2	6	4	7	3	8	9	5	2,5	5	
10,11	Долбежный станок	13	12	17	10	11	15	8	9	14	16	
8,9	Радиально сверлильный станок	3	1	6	1,5	4	2	5	8	2,2	3	
12,13,41	Гидропресс на 25т	25	30	33	32	28	27	31	34	22	20	
14-18	Притирочный станок	28	33	36	34	32	31	35	38	26	24	
21,22,40	Заточный станок	30	31	34	33	37	28	22	25	35	32	
19,20	Универсально-заточный станок	20	19	21	18	24	16	17	25	22	15	
23	Шлифовальный станок	28	21	30	35	31	32	27	25	26	33	
24,25	Пресс	10	11	9	8	7	12	13	14	15	16	
26,29	Вентилятор калорифера	4	5	6	3	7	4,8	9	8	4,2	2,5	
27,28	Вентилятор вытяжной	75	80	10	45	60	50	85	11	70	65	
30-33	Насос гидравлический	40	50	44	38	51	39	30	48	55	58	
34,35	Координатно-расточный станок	15	17	14	13	20	21	19	18	16	22	
36,37	Поперечно-строгальный станок	16	18	15	14	21	22	20	19	17	23	
38	Кран мостовой ПВ=40%	20	22	19	18	17	16	21	15	14	24	
39	Конвейер	7	8	6	10	9	11	7,5	9	12	9,5	

Таблица 20.8 - Сведения об электрических нагрузках инструментального цеха

**		Установленная мощность ЭП, кВ							кВт			
Номер на плане	Наименование электроприемника		Номер варианта									
планс		1	2	3	4	5	6	7	8	8 9 7 14 6 24 8 12 6 22 5 62 2 19 4 8 0 13 10 70 2 74	10	
1,7,10,30,31	Вентилятор калориферов	12	16	14	15	11	10	19	17	14	13	
2,3	Сварочный трансформатор, ПВ=65%	26	30	22	27	25	20	28	26	24	29	
4,19,27	Кран мостовой ПВ=40%	7	9	10	6	5	11	7	8	12	14	
5,8	Вертикально-сверлильный станок	30	50	33	34	42	40	38	26	22	36	
6,25,29	Наждак	55	47	40	64	58	50	60	45	62	66	
9,15	Токарно-винторезный станок	14	10	12	18	11	16	20	22	19	15	
11,16	Продольно-строгальный станок	2	3	5	6	9	1	7	4	8	10	
12-14	Вертикально-сверлильный станок	9	7	11	13	5	6	8	10	13	4	
17	Механические двери		80	100	95	60	90	85	110	70	65	
18,28	Вентиляторы калориферов дверей		55	50	84	66	48	39	62	74	78	
21-24	Стенд сборки и обкатки машин	7	6	9	5	4	8	10	11	14	12	
26,30	Пресс кривошипный	12	16	14	15	11	10	19	17	14	13	

Таблица 20.9 - Сведения об электрических нагрузках ремонтно-механического цеха

,	0.9 - Сведения об электрических на			•				ость				
Номер на плане	Наименование электроприемника		Номер варианта									
Планс		1	2	3	4	5	6	7	8	9	10	
1	Прокатный стан	3	4	7	5	8	10	4	6	3	9	
2,7	Кран мостовой, 0=5т, ПВ=40%	12	14	10	16	20	17	15	18	12	22	
3	Ножницы-тяпки	9	10	12	8	11	12	7	8	16	14	
4,20	Ножницы дисковые концевые	2	4	5	3	6	4	7	5	2	9	
5	Ножницы дисковые		14	15	18	12	17	20	18	13	11	
6,21	Прокладочный станок	2	3	1,5	4	6	2,2	6	3	5	4	
8	Сушильная печь	0,5	1	2	3	2,2	3	4	1	1,2	3	
9	Листоправочная машина	4	2	3	7	5	9	10	6	1	7	
10,13	Четырехвалковый прокатный стан	15	18	12	20	22	19	21	17	16	14	
11	Кран мостовой ПВ=40%	3	2	6	1	7	5	4	8	9	11	
12	Гидравлический пресс	2	5	1	7	3	9	8	4	1	6	
14	Гильотинные ножницы	3	8	10	11	9	6	7	12	5	4	
15,19	Вальцешлифовальный станок	1	4	2	7	10	7	5	3	11	8	
16	Пресс	10	11	14	16	19	13	15	17	18	12	
17,18	Брикетировочный пресс	8	9	7	4	5	10	6	2	11	3	
22-24	Токарный полуавтомат	5	8	6	10	9	7	4	11	4	9	
25,26	Вертикально-сверлильный станок	4	7	5	6	8	9	7	4	6	5	
27- 30	Токарно-винторезный станок	8	12	14	10	10	6	8	20	24	16	

Таблица 20.10 - Сведения для расчета заземляющих устройств

Гаолица 20.10 - Сведения Вариант Габаритные			Тип грунта	Форма	Глубина	
Dupmum		ы цеха, м			*	размещения
	длина	ширина		Вертик.	Горизонт.	электродов
01	60	18	Чернозем	стержень, d=5см длиной 2м	полоса шириной b=12 мм	h= 0,7м
02	72	24	Глина	уголок, d=5см длиной 4м	полоса шириной b=16 мм	h= 0,5 _M
03	66	24	Суглинок	стержень, d=5см длиной 2м	полоса шириной b=12 мм	h= 0,7м
04	72	18	Супесь	уголок, d=5см длиной 4м	полоса шириной b=16 мм	h= 0,5м
05	90	24	Песок	стержень, d=5см длиной 2м	полоса шириной b=12 мм	h= 0,7м
06	72	24	Торф	уголок, d=5см длиной 4м	полоса шириной b=16 мм	h= 0,5 _M
07	72	18	Чернозем	стержень, d=5см длиной 2м	полоса шириной b=12 мм	h= 0,7м
08	90	24	Глина	уголок, d=5см длиной 4м	полоса шириной b=16 мм	h= 0,5м
09	72	24	Суглинок	стержень, d=5см длиной 2м	полоса шириной b=12 мм	h= 0,7м
10	66	18	Супесь	уголок, d=5см длиной 4м	полоса шириной b=16 мм	h= 0,5 _M
11	60	18	Песок	стержень, d=5см длиной 2м	полоса шириной b=12 мм	h= 0,7 _M
12	66	12	Торф	уголок, d=5см длиной 4м	полоса шириной b=16 мм	h= 0,5 _M
13	72	18	Чернозем	стержень, d=5см длиной 2м	полоса шириной b=12 мм	h= 0,7 _M
14	90	18	Глина	уголок, d=5см длиной 4м	полоса шириной b=16 мм	h= 0,5 _M
15	36	12	Суглинок	стержень, d=5см длиной 2м	полоса шириной b=12 мм	h= 0,7 _M
16	24	12	Супесь	уголок, d=5см длиной 4м	полоса шириной b=16 мм	h= 0,5 _M
17	12	12	Песок	стержень, d=5см длиной 2м	полоса шириной b=12 мм	h= 0,7 _M
18	24	12	Торф	уголок, d=5см длиной 4м	полоса шириной b=16 мм	h= 0,5 _M
19	18	12	Чернозем	стержень, d=5см длиной 2м	полоса шириной b=12 мм	h= 0,7м
20	18	24	Глина	уголок, d=5см длиной 4м	полоса шириной b=16 мм	h= 0,5м
21	22	13	Суглинок	стержень, d=5см длиной 2м	полоса шириной b=12 мм	h= 0,7м
22	34	12	Супесь	уголок, d=5см длиной 4м	полоса шириной b=16 мм	h= 0,5м
23	40	18	Песок	стержень, d=5см длиной 2м	полоса шириной b=12 мм	h= 0,7м
24	45	16	Торф	уголок, d=5см длиной 4м	полоса шириной b=16 мм	h= 0,5м
25	62	20	Чернозем	стержень, d=5см длиной 2м	полоса шириной b=12 мм	h= 0,7м

Отношение расстояний между заземлителями к их длине принять равным:

a/l = 1 - для нечетных вариантов

a/l = 2 - для четных вариантов

При расчете защитного зануления принять следующие данные согласно полученным расчетам, а именно:

- Мощность силового трансформатора;
- Номинальный ток автоматического выключателя в цепи ИП- Трансформатор.

Принять для расчета следующие данные:

Длина линии до силового трансформатора 250 и 500м соответственно, выполненных медным проводником сечением $16 \mathrm{mm}^2$.

Нулевой защитный проводник сечением 10мм².

Рисунок 20.1 - Генплан сборочного цеха

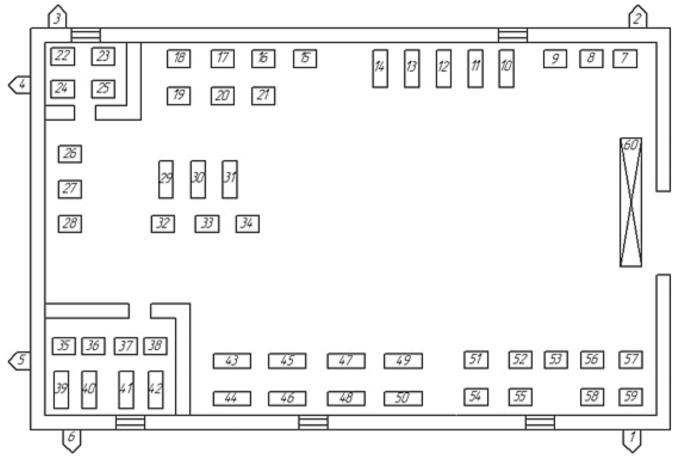


Рисунок 20.2 - Генплан ремонтно-механического цеха

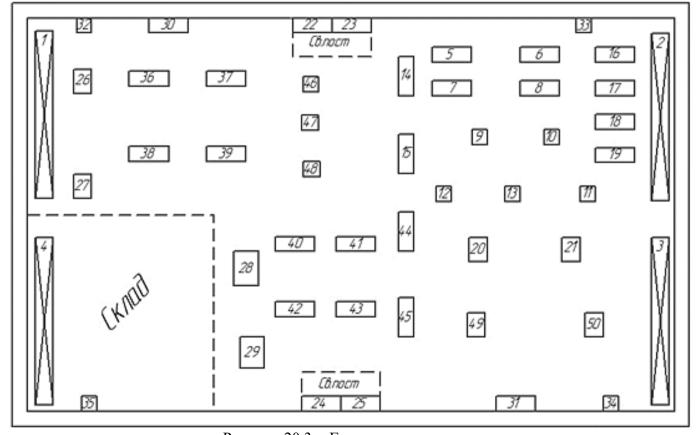


Рисунок 20.3 - Генплан электроцеха

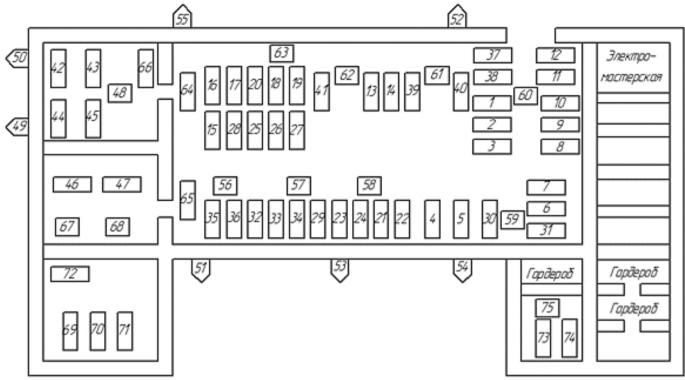


Рисунок 20.4 - Генплан литиевого цеха

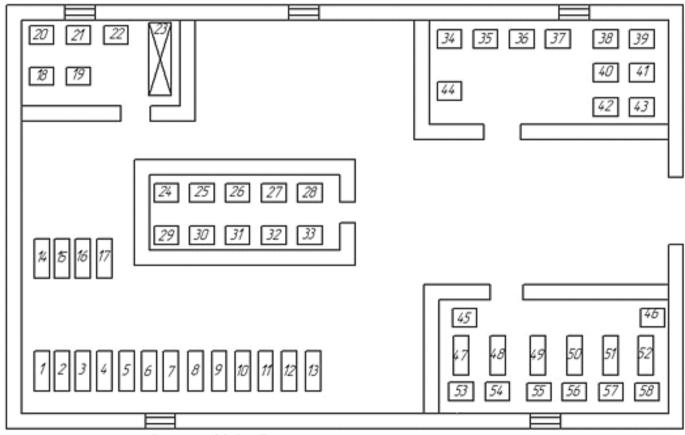


Рисунок 20.5 - Генплан цеха химического улавливания

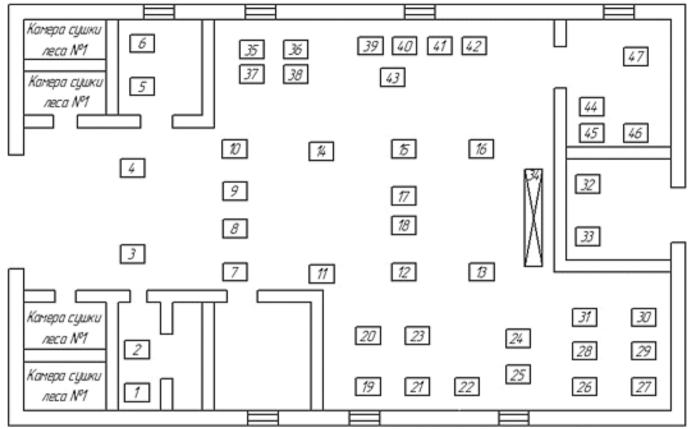


Рисунок 20.6 - Генплан деревообрабатывающего цеха

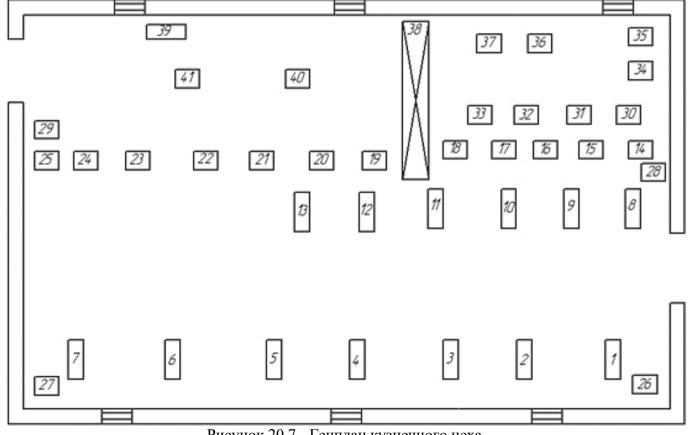


Рисунок 20.7 - Генплан кузнечного цеха

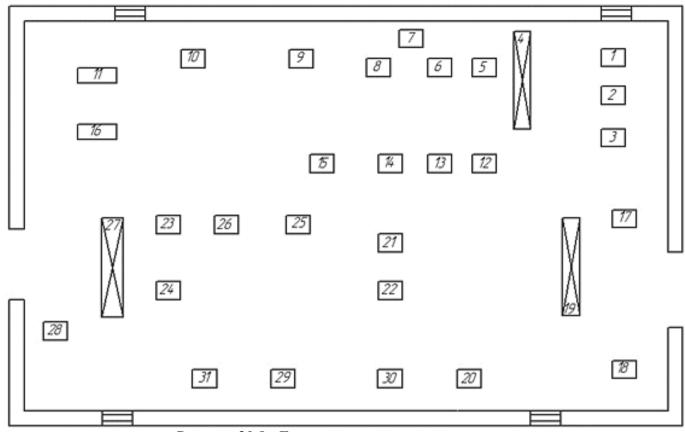


Рисунок 20.8 - Генплан инструментального цеха

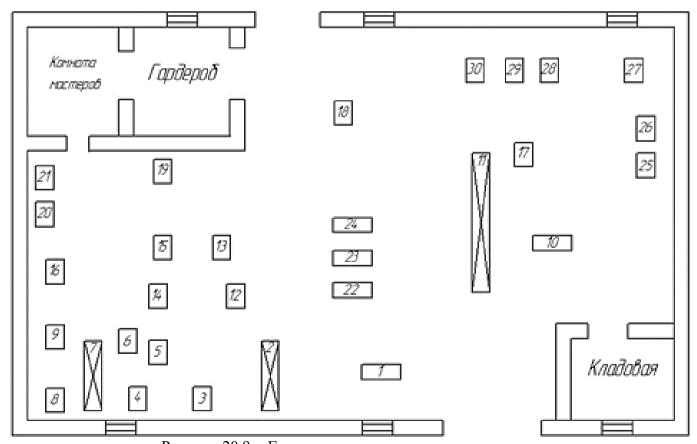


Рисунок 20.9 - Генплан ремонтно-механического цеха

Оценка по курсовой работе определяется на основании следующих критериев:

- «отлично» заслуживает студент, показавший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины и их значение для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала;
- «хорошо» заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности;
- «удовлетворительно» заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя;
- «неудовлетворительно»- выставляется студенту, обнаружившему проблемы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» выставляется студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Перечень вопросов и задач по практике по модулю <u>ПМ 02</u>

Вопросы для собеседования по ПМ 02

- 1. Воздушные и элегазовые выключатели: конструкция и назначение.
- 2. Последовательность монтажа воздушной линии.
- 3. Короткозамыкатели и отделители: конструкция и назначение.
- 4. Воздушные линии: устройство, назначение элементов. Провода воздушных линий.
- 5. Приводы к коммутационной аппаратуре: виды, конструкция и назначение.
- 6. Замкнутые электрические сети: понятие, виды, область применения.
- 7. Вводы в здания: виды, устройство, нормативные характеристики.
- 8. Горение и гашение дуги в коммутационных аппаратах. Способы гашения дуги.
- 10. Вакуумные выключатели: конструкция, преимущество.
- 11. Заземляющие устройства: конструкция, технические требования.
- 12. Нагрузки и потери энергии в электрических сетях. Потери энергии в трансформаторах и проводах линии.
 - 13. Выключатели нагрузки: назначение и классификация.
 - 14. Автоматическое включение резерва: виды, назначение, требования к устройствам АВР.
 - 15. Основные источники электрической энергии: виды, достоинства и недостатки.
 - 16. Требованияк контактам высоковольтных коммутационных аппаратов. Виды контактов.
- 17. Классификацияпотребителей по графикам нагрузки. Виды графиков нагрузки, их назначение.
 - 18. Предохранители на напряжение до 1000: конструкция и назначение.
 - 19. Трансформаторытока: конструкция, назначение, особенности работы.
 - 20. Автоматические выключатели: назначение, конструкция, параметры выбора.
 - 21. Замыкания на землю в сетях с изолированной нейтралью: последствия, действия персонала.
 - 22. Мероприятия, направленные на снижение потерь электроэнергии в сетях.
 - 23. Контрольно-измерительные приборы: виды, назначение, область применения.
 - 24. Разъединителина напряжение выше 1 кВ: конструкция и назначение.
 - 25. Разрядники: виды, назначение, конструкция.
- 26. Категории надежности электроснабжения: виды, характеристика, обеспечение надежности электроснабжения.
 - 27. Комплектныетрансформаторные подстанции: назначение, устройство.
- 28. Автоматическое повторное включение. Успешное и неуспешное АПВ. Требования к АПВ. Виды АПВ.
 - 29. Защитные средства, применяемые в электроустановках до 1000 В.
 - 30. Схемы защиты трансформаторных подстанций от перенапряжения.
- 31. Сети, выполненные изолированными проводами: преимущества и недостатки, расчет сетей выполненных изолированными проводами.
 - 32. Сельские трансформаторные подстанции: виды, назначение.
 - 33. Масляные включатели: назначение, виды, конструкция.
 - 34. Определение токов короткого замыкания в сельских электрических сетях.
 - 35. Защита электроустановок от атмосферных перенапряжений.

Устройство молниеотвода. Расчет защитной зоны.

- 36. Предохранители на напряжение выше 1000 В: конструкция и назначение.
- 37. Устройство воздушных линий на напряжение до и выше 1 кВ.
- 38. Защита трансформаторов: виды, назначение.
- 39. Изоляторы для электрических установок: виды, конструкция.
- 40. Изоляторы и опоры воздушных линий: классификация и назначение.
- 41. Ремонт креплений и соединений.
- 42. Определение мест повреждения скрытых проводок.

- 43. Ввод воздушных и кабельных линий в эксплуатацию.
- 44. Техническое обслуживание воздушных и кабельных линий, их осмотры, порядок проведения и оформления технической документации
- 45. Проверки и испытания на воздушных и кабельных линиях; виды испытаний и оформление результатов испытаний.
 - 46. Соблюдение токовых и тепловых режимов ВЛЭН и КЛЭП.
 - 47. Измерение сопротивления фаза ноль.
 - 48. Охрана воздушных и кабельных линий.
- 49. Правила безопасности при эксплуатации воздушных линий напряжением до 1000В.
- 50. Правила безопасности при эксплуатации кабельных линий напряжением до 1000В.
 - 51. Технология ремонта воздушных линий напряжением до 1000 В.
 - 52. Технология ремонта кабельных линий напряжением до 1000 В.
 - 53. Реконструкция, восстановление линий и их содержание.
 - 54. Капитальный ремонт воздушных линий.
- 55. Техническая документация на подготовку, проведение и завершение работ по техническому обслуживанию и ремонту электрических сетей.
- 56. Способы выявления мест повреждений кабельных линий, определение вида, зоны и места повреждения.
 - 57. Ввод резервных электростанций в эксплуатацию.
 - 58. Пуск и остановка резервных электростанций, контроль за их работой.
- 59. Включение генератора на параллельную работу с сетью в ручном режиме и в режиме автоматического включения.
- 60. Объём операций по техническому обслуживанию электрической части резервных электростанций.
- 61. Объём операций по текущему ремонту генератора и оборудования щита управления.
- 62. Правила безопасности при эксплуатации стационарных резервных электростанций.
 - 63. Правила безопасности при эксплуатации мобильных резервных электростанций.
 - 64. Ремонт воздушных линий напряжением до 1000 В.
 - 65. Ремонт кабельных линий напряжением до 1000 В.

Задачи по ПМ 02

- 1. Дайте характеристику по электробезопасности следующим помещениям: 1 помещение влажность 75%, температура $22\,^{0}$ C, полы сухие деревянные; 2 помещение (коровник) влажность 75%, температура $18\,^{0}$ C; 3 помещение баня.
- 2. Нарисуйте план, составьте монтажную схему электроснабжения оборудования и рассчитайте необходимое количество кабеля в помещении при условии, что размеры помещения ширина 4,5м, длинна 6,8м, высота 3,5м. В помещении находиться следующее электрооборудование: люстра, две розетки с заземляющими контактами,

двухполюсный выключатель. Расположение розеток, выключателя и светильника обоснуйте, расположение двери, и направление ее открывания выберите самостоятельно.

- 3. Определите нагрузку и произведите выбор силового трансформатора на трансформаторной подстанции при условии, что к нему будут подключены два промышленных объекта мощностью P1=17,6 кВт, P2=15,5 кВт, а так же жилые дома в количестве 59 шт. Мощность одного дома 2 кВт.
- 4. Определите нагрузку и произведите выбор силового трансформатора на трансформаторной подстанции при условии, что к нему будут подключены промышленный объект мощностью P1=43 кВт, а так же жилые дома в количестве 108 шт. Мощность одного дома 2,2 кВт.
- 5. Определите сечение алюминиевого провода четырех проводной линии трехфазного тока напряжением 380/220В длиной 358м, по которой передается нагрузка 37,4 кВт. Нагрузка равномерно рассредоточена по линии. Допустимая потеря напряжения ВЛ-0,4 кВ Δ U% = 5%.
- 6. Определите сечение алюминиевого провода четырех проводной линии трехфазного тока напряжением 380/220В длиной 813м, по которой передается нагрузка 17,7 кВт. Нагрузка равномерно рассредоточена по линии. Допустимая потеря напряжения ВЛ-0.4 кВ $\Delta U\% = 3,7\%$.
- 7. Определите сечение алюминиевого провода четырех проводной линии трехфазного тока напряжением 380/220В длиной 128м, по которой передается нагрузка 28,4 кВт. Нагрузка равномерно рассредоточена по линии. Допустимая потеря напряжения ВЛ-0,4 кВ Δ U% = 3,5%.
- 8. Определите сечение и марку кабеля для ввода коровника с суммарной мощностью потребителя $\Sigma P=83.4$ кВт, принимая: UH=380 B; $\eta=0.88$; cos $\phi=0.86$.
- 9. Определите сечение и марку кабеля для ввода свинарника с суммарной мощностью потребителя $\Sigma P=44$ кВт, принимая: UH=380 B; $\eta=0.86$; cos $\phi=0.78$.
- 10. Определите сечение и марку кабеля для ввода телятника с суммарной мощностью потребителя $\Sigma P=28,5$ кВт, принимая: UH=380 B; $\eta=0.84$; cos $\phi=0.8$.
- 11. Произведите выбор марок кабелей (с алюминиевыми и медными жилами) и аппарата защиты (автоматического выключателя) для электроснабжения электродвигателя марки 4A180S4У3.
- 12. Произведите выбор марок кабелей (с алюминиевыми и медными жилами) и аппарата защиты (автоматического выключателя) для электроснабжения электродвигателя марки АИР112М2.
- 13. Произведите выбор трансформаторов тока и начертите схему их подключения к счетчику электрической энергии при условии, что мощность потребителя P=87 кВт, $\cos \varphi=0.7$; счетчик CAУ4-678 (Ісч=3*5A U=220/380).
- 14. Рассчитайте наиболее экономически выгодное падение напряжения в воздушной линии 0,4 кВ при условии, что падение напряжения ВЛ-10 кВ составляет 0,6%, по-

тери напряжения в трансформаторе составляют 2,6%, потери напряжения во внутренних сетях не более 2,5%.

15. Рассчитайте наиболее экономически выгодное падение напряжения в воздушной линии 0,4 кВ при условии, что падение напряжения ВЛ-10 кВ составляет 2,7%, потери напряжения в трансформаторе составляют 2,3%, потери напряжения во внутренних сетях не более 2%.

Перечень задач по производственной практике по модулю ПМ 02

- 1. Нарисуйте план, составьте монтажную схему электроснабжения оборудования и рассчитайте необходимое количество кабеля в помещении при условии, что размеры помещения ширина 5,2м, длинна 7,4м, высота 3,0 м. В помещении находиться следующее электрооборудование: люстра, две розетки с заземляющими контактами, два переключателя. Расположение розеток, переключателей и светильника обоснуйте. Расположение двери и направление ее открывания выберите самостоятельно.
- 2. Определите нагрузку и произведите выбор силового трансформатора на трансформаторной подстанции при условии, что к нему будут подключены два промышленных объекта мощностью P1=24 кВт, P2=16,5 кВт, а так же жилые дома в количестве 38 шт. Мощность одного дома 1,8 кВт.
- 3. Определите нагрузку и произведите выбор силового трансформатора на трансформаторной подстанции при условии, что к нему будут подключены два промышленных объекта мощностью $P1=30~\mathrm{kBt}$, $P2=19,5~\mathrm{kBt}$, а так же жилые дома в количестве 53 шт. Мощность одного дома 2,8 кВт.
- 4. Определите сечение алюминиевого провода четырех проводной линии трехфазного тока напряжением 380/220В длиной 128м, по которой передается нагрузка 17,7 кВт. Нагрузка сосредоточена в конце линии. Допустимая потеря напряжения ВЛ-0,4 кВ $\Delta U\% = 2,5\%$.
- 5. Определите сечение алюминиевого провода четырех проводной линии трехфазного тока напряжением 380/220В длиной 324м, по которой передается нагрузка 23,7 кВт. Нагрузка сосредоточена в конце линии. Допустимая потеря напряжения ВЛ-0,4 кВ $\Delta U\% = 4,5\%$.
- 6. Определите сечение алюминиевого провода четырех проводной линии трехфазного тока напряжением 380/220В длиной 67м, по которой передается нагрузка 45 кВт. Нагрузка сосредоточена в конце линии. Допустимая потеря напряжения ВЛ-0,4 кВ $\Delta U\% = 5,7\%$.
- 7. Определите сечение и марку кабеля для ввода теплицы с суммарной мощностью потребителя $\Sigma P=22$ кВт, принимая: UH=380 B; $\eta=0.92$; cos $\phi=0.9$.
- 8. Определите сечение и марку кабеля для питания кормоцеха с суммарной мощностью потребителя $\Sigma P=67$ кВт, принимая: UH=380 B; $\eta=0.82$; cos $\phi=0.7$.
- 9. Произведите анализ схемы КТП-100 10/0,4. Расшифруйте условное обозначение перечисленных элементов схемы (PA; PV; F; SQ; TV; TA; F1), укажите значение данных элементов в схеме КТП-100 10/0,4.

- 10. Произведите выбор марок кабелей (с алюминиевыми и медными жилами) и аппарата защиты (автоматического выключателя) для электроснабжения электродвигателя марки АИР200М4.
- 11. Произведите выбор марок кабелей (с алюминиевыми и медными жилами) и аппарата защиты (автоматического выключателя) для электроснабжения электродвигателя марки 4A160M6V3.
- 12. Произведите выбор трансформаторов тока и начертите схему их подключения к счетчику электрической энергии при условии, что мощность потребителя P=147 кВт, $\cos \varphi=0.8$; счетчик CAV4-678 (Icu=3*5A U=220/380)
- 13. Произведите выбор трансформаторов тока и начертите схему их подключения к счетчику электрической энергии при условии, что мощность потребителя P=257 кВт, соѕ φ=0,78; счетчик САУ4-678 (Ісч=3*5А U=220/380)
- 14. Рассчитайте наиболее экономически выгодное падение напряжения в воздушной линии 0,4 кВ при условии, что падение напряжения ВЛ-10 кВ составляет 1,1%, потери напряжения в трансформаторе составляют 1,6%, потери напряжения во внутренних сетях не более 2,5%.
- 15. Рассчитайте наиболее экономически выгодное падение напряжения в воздушной линии 0,4 кВ при условии, что падение напряжения ВЛ-10 кВ составляет 2,5%, потери напряжения в трансформаторе составляют 1,0%, потери напряжения во внутренних сетях не более 2%.

Задание на экзамен квалификационный по модулю ПМ 02

Обеспечение электроснабжения сельскохозяйственных потребителей

ФГБОУ ВО «Белгородский государственн	ыйаграрный университет им. В.Я.Горина»
Факультет среднего	Кафедра электрооборудования
профессионального образования	и электротехнологий в АПК
Семестр 8	Kypc 4
35.02.08 Электрификация и авто	оматизация сельского хозяйства
БИЛЕ	ФИКАЦИОННЫЙ) СТ № 1 ктроснабжения сельскохозяйственных предпри-
	ий
1 Технологический процесс производства и потреб. 2 Устройство воздушных линий	ления электроэнергии иная задача
Провести выбор сечения провода для подключе	ения двигателя по схеме показанной на рисунке 1 ть электродвигателя Рн=2,2 кВт., соsφ =0,87, КПД

Рисунок 1				
Зав. кафедрой Ст. преподаватель кафедры				
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.	

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)

БИЛЕТ № 2

Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Особенности электроснабжения сельского хозяйства
- 2 Неизолированные провода для воздушных линий

Ситуационная задача

Провести выбор предохранителей для подключения двигателя по схеме показанной на рисунке 2 Напряжение питания сети $U_{\rm J}=380{\rm B}$, мощность электродвигателя $P_{\rm H}=2,2~{\rm kBt.}$, $\cos\phi=0.87,~{\rm K\Pi}{\rm J}$ двигателя $\eta=0.83,~{\rm kpathoctb}$ пускового тока $k_{\rm i}=6.5.$

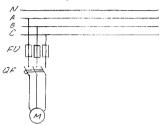


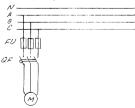
Рисунок 2

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего Кафедра электрооборудования		
профессионального образования	и электротехнологий в АПК	
Семестр 8 Курс 4		
35.02.08 Электрификация и автоматизация сельского хозяйства		

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)

БИЛЕТ № 3


Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Назначение электрической подстанции
- 2 Изоляторы воздушных линий

Ситуационная задача

Провести выбор автоматического выключателя для подключения двигателя по схеме показанной на рисунке 3

Напряжение питания сети $U_{\rm J}=380{\rm B}$, мощность электродвигателя $P_{\rm H}=2.2~{\rm kBr.}$, $\cos\phi=0.87$, $K\Pi \Box$ двигателя $\eta=0.83$, кратность пускового тока $k_{\rm i}=6.5$.

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)

БИЛЕТ № 4

Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Структурная схема трансформаторной подстанции
- 2 Изоляторы для электрических установок

Ситуационная задача

Провести выбор нереверсивного магнитного пускателя для подключения двигателя по схеме по-казанной на рисунке 4

Напряжение питания сети $U_{\pi} = 380B$, мощность электродвигателя $P_{\pi} = 2.2$ к B_{π} ., $cos\phi = 0.87$, КПД двигателя $\eta = 0.83$, кратность пускового тока $k_i = 6.5$.

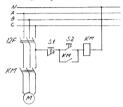
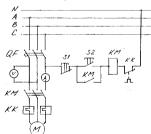


Рисунок 4

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего Кафедра электрооборудования		
профессионального образования	и электротехнологий в АПК	
Семестр 8 Курс 4		
35.02.08 Электрификация и автоматизация сельского хозяйства		


ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ) БИЛЕТ № 5

Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Главные схемы соединения подстанций
- 2 Плавкие предохранители на напряжение ниже 1 кВ

Ситуационная задача

Провести выбор теплового реле для подключения двигателя по схеме показанной на рисунке 5 Напряжение питания сети $U_{\rm J}=380{\rm B}$, мощность электродвигателя $P_{\rm H}=2.2~{\rm kBt.}$, $\cos\phi=0.87$, $K\Pi \Box$ д двигателя $\eta=0.83$, кратность пускового тока $k_{\rm i}=6.5$.

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)

БИЛЕТ № 6

Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Комплект оборудования трансформаторной подстанции
- 2 Плавкие предохранители на напряжение выше 1 кВ

Ситуационная задача

Провести выбор реверсивного магнитного пускателя для подключения двигателя по схеме показанной на рисунке 6

Напряжение питания сети $U_{\pi} = 380B$, мощность электродвигателя $P_{\pi} = 2.2$ к B_{π} ., $cos\phi = 0.87$, КПД двигателя $\eta = 0.83$, кратность пускового тока $k_i = 6.5$.

Рисунок 6

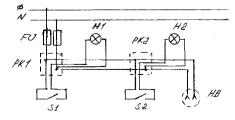
	-		
Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего Кафедра электрооборудования		
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	
35.02.08 Электрификация и автоматизация сельского хозяйства		

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)

БИЛЕТ № 7

Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий


- 1 Структурная схема сельской трансформаторной подстанции
- 2 Автоматические воздушные выключатели

7

Ситуационная задача

Провести выбор сечения провода для подключения электропотребителей по схеме показанной на рисунке

Напряжение питания сети $U\phi = 220B$, мощность ламп освещения $P_n=100~B\tau$, расчетная мощность электропотребителей подключаемых к розетке HB $P_n=2,2$ к $B\tau$.

	-		
Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8 Курс 4		

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)

БИЛЕТ № 8 Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных пред-

- 1 Главные схемы соединений сельских трансформаторных подстанций
- 2 Масляные выключатели

Ситуационная задача

приятий

Провести выбор предохранителей для подключения электропотребителей по схеме показанной на рисунке 8

Напряжение питания сети $U\varphi = 220B$, мощность ламп освещения $P_n=100~B\tau$, расчетная мощность электропотребителей подключаемых к розетке $HB~P_H=2,2~kB\tau$.

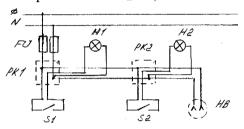
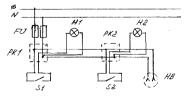


Рисунок 8

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	
35.02.08 Электрификация и автоматизация сельского хозяйства		

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ) БИЛЕТ № 9


Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Сельские трансформаторные подстанции 6 10/0,38 кВ
- 2 Безмасляные выключатели

Ситуационная задача

Провести выбор автоматических выключателей для подключения электропотребителей по схеме показанной на рисунке 9

Напряжение питания сети $U\varphi = 220B$, мощность ламп освещения $P_\pi = 100$ BT, расчетная мощность электропотребителей подключаемых к розетке HB $P_H = 2.2$ кBт.

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	
	·	

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)

БИЛЕТ № 10

Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Схемы соединения шин
- 2 Приводы к коммутационной аппаратуре

Ситуационная задача

Провести выбор амперметра и вольтметра для измерения тока и напряжения в цепи двигателя по схеме показанной на рисунке 10

Напряжение питания сети $U_{\pi} = 380B$, мощность электродвигателя $P_{\pi} = 2.2$ к B_{π} ., $cos\phi = 0.87$, КПД двигателя $\eta = 0.83$, кратность пускового тока $k_i = 6.5$.

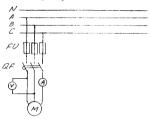
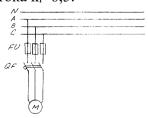


Рисунок 10

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8	Курс 4	
35.02.08 Электрификация и автоматизация сельского хозяйства		

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)


БИЛЕТ № 11

Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Главные схемы соединений РТП на напряжение 35 110 кВ
- 2 Разъединители

Ситуационная задача

Провести выбор сечения провода для подключения двигателя по схеме показанной на рисунке 11 Напряжение питания сети $U_{\rm I}=380{\rm B}$, мощность электродвигателя $P_{\rm H}=2.2~{\rm kBt.}$, $\cos\phi=0.87$, $K\Pi Z_{\rm I}=0.83$, кратность пускового тока $k_{\rm i}=6.5$.

Зав. кафедрой	<u> </u>	Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего Кафедра электрооборудования		
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)

БИЛЕТ № 12

Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Главные схемы соединений ТП 10 кВ
- 2 Общие вопросы эксплуатации воздушных линий напряжением до 1000 В.

Ситуационная задача

Провести выбор предохранителей для подключения двигателя по схеме показанной на рисунке 12

Напряжение питания сети $U_{\pi}=380B$, мощность электродвигателя $P_{\pi}=2.2~kB_{\pi}$., $cos\phi=0.87, K\PiД$ двигателя $\eta=0.83$, кратность пускового тока $k_i=6.5$.

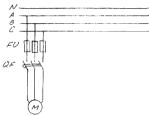


Рисунок 12

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	
35.02.08 Электрификация и автоматизация сельского хозяйства		

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ) БИЛЕТ № 13


Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Комплектная трансформаторная подстанция
- 2 Профилактические измерения и проверки на ВЛ напряжением до 1000 В

Ситуационная задача

Провести выбор автоматического выключателя для подключения двигателя по схеме показанной на рисунке 13

Напряжение питания сети $U_{\rm J}=380{\rm B}$, мощность электродвигателя $P_{\rm H}=2.2~{\rm kBr.}$, $\cos\phi=0.87$, $K\Pi \Box$ двигателя $\eta=0.83$, кратность пускового тока $k_{\rm i}=6.5$.

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)

БИЛЕТ № 14

Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 КТП киоскового типа
- 2 Планово-предупредительные ремонты воздушных линий. Ремонт деревянных опор

Ситуационная задача

Провести выбор нереверсивного магнитного пускателя для подключения двигателя по схеме показанной на рисунке 14

Напряжение питания сети $U_{\pi} = 380B$, мощность электродвигателя $P_{\pi} = 2.2$ к B_{π} ., $cos\phi = 0.87$, КПД двигателя $\eta = 0.83$, кратность пускового тока $k_i = 6.5$.

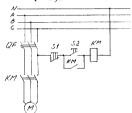
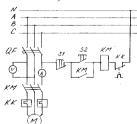


Рисунок 14

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	
35.02.08 Электрификация и автоматизация сельского хозяйства		

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)


БИЛЕТ № 15

Профессиональный модуль 0.2 Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Технические данные КТП
- 2 Ремонт железобетонных опор и проводов

Ситуационная задача

Провести выбор теплового реле для подключения двигателя по схеме показанной на рисунке 15 Напряжение питания сети $U_{\rm J}=380{\rm B}$, мощность электродвигателя $P_{\rm H}=2,2~{\rm kBt.}$, $\cos\phi=0.87,~{\rm K\Pi J}$ двигателя $\eta=0.83$, кратность пускового тока $k_{\rm i}=6.5$.

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	
	·	

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)

БИЛЕТ № 16

Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Подстанции в бетонном корпусе с внутренним коридором обслуживания
- 2 Опасные и вредные производственные факторы при монтаже и демонтаже ВЛ

Ситуационная задача

Провести выбор реверсивного магнитного пускателя для подключения двигателя по схеме показанной на рисунке 16

Напряжение питания сети $U_{\rm J}=380{\rm B}$, мощность электродвигателя $P_{\rm H}=2,2~{\rm kBr.}$, $\cos\phi=0.87,~{\rm K\Pi}{\rm Д}$ двигателя $\eta=0.83,~{\rm kpathocth}$ пускового тока $k_{\rm i}=6.5.$

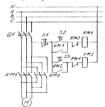
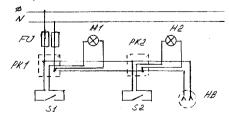


Рисунок 16

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	
35.02.08 Электрификация и автоматизация сельского хозяйства		

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ) БИЛЕТ № 17


Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Подстанции в бетонном корпусе по специальным проектам
- 2 Эксплуатация силовых трансформаторов. Общие положения

Ситуационная задача

Провести выбор сечения провода для подключения электропотребителей по схеме показанной на рисунке 17

Напряжение питания сети $U\varphi = 220B$, мощность ламп освещения $P_{\pi}=100$ BT, расчетная мощность электропотребителей подключаемых к розетке HB $P_{H}=2.2$ кBт.

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	
	·	

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)

БИЛЕТ № 18

Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Подстанции в бетонном корпусе с наружным обслуживанием
- 2 Типы трансформаторов и автотрансформаторов

Ситуационная задача

Провести выбор предохранителей для подключения электропотребителей по схеме показанной на рисунке 18

Напряжение питания сети $U\varphi = 220B$, мощность ламп освещения $P_n=100~B\tau$, расчетная мощность электропотребителей подключаемых к розетке $HB~P_H=2,2~\kappa B\tau$.

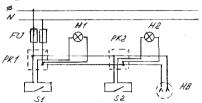
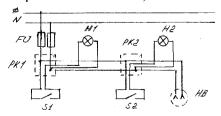


Рисунок 18

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего Кафедра электрооборудования		
профессионального образования	и электротехнологий в АПК	
Семестр 8 Курс 4		
35.02.08 Электрификация и автоматизация сельского хозяйства		

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ) БИЛЕТ № 19


Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Классификация распределительных устройств
- 2 Основные характеристики трансформаторов и автотрансформаторов

Ситуационная задача

Провести выбор автоматических выключателей для подключения электропотребителей по схеме показанной на рисунке 19

Напряжение питания сети $U\varphi = 220B$, мощность ламп освещения $P_{\pi}=100$ BT, расчетная мощность электропотребителей подключаемых к розетке HB $P_{H}=2,2$ кBт.

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	
2 7 2 2 2 2 2 2 2	•	

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)

БИЛЕТ № 20

Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 КРУ на напряжение до 1000 В
- 2 Общие вопросы эксплуатации силовых кабельных линий

Ситуационная задача

Провести выбор амперметра и вольтметра для измерения тока и напряжения в цепи двигателя по схеме показанной на рисунке 20

Напряжение питания сети $U_{\pi} = 380B$, мощность электродвигателя $P_{H}=2,2$ к B_{π} ., $cos\phi = 0.87$, К Π Д двигателя $\eta = 0.83$, кратность пускового тока $k_i=6,5$.

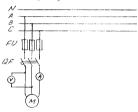
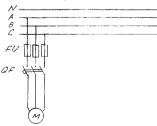


Рисунок 20

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего Кафедра электрооборудования		
профессионального образования	и электротехнологий в АПК	
Семестр 8 Курс 4		
35.02.08 Электрификация и автоматизация сельского хозяйства		

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)


БИЛЕТ № 21

Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 КРУ на напряжение выше 1000 В
- 2 Охлаждение трансформаторов и основные сведения о трансформаторном масле

Ситуационная задача

Провести выбор сечения провода для подключения двигателя по схеме показанной на рисунке 21 Напряжение питания сети $U_{\rm J}=380{\rm B}$, мощность электродвигателя $P_{\rm H}=2.2~{\rm kBt.}$, $\cos\phi=0.87$, КПД двигателя $\eta=0.83$, кратность пускового тока $k_{\rm i}=6.5$.

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ)

БИЛЕТ № 22

Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Эксплуатация силовых трансформаторов. Общие положения
- 2 Измерительные трансформаторы напряжения. Общие сведения

Ситуационная задача

Провести выбор предохранителей для подключения двигателя по схеме показанной на рисунке 22

Напряжение питания сети $U_{\rm J}=380{\rm B}$, мощность электродвигателя $P_{\rm H}=2,2~{\rm kBr.}$, $\cos\phi=0.87,~{\rm K\Pi}{\rm Д}$ двигателя $\eta=0.83,~{\rm kpathocth}$ пускового тока $k_{\rm i}=6,5.$

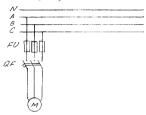
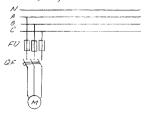


Рисунок 22

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего Кафедра электрооборудования		
профессионального образования	и электротехнологий в АПК	
Семестр 8 Курс 4		
35.02.08 Электрификация и автоматизация сельского хозяйства		

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ) БИЛЕТ № 23


Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

- 1 Высоковольтные измерительные трансформаторы напряжения. Устройство и схемы соединения
- 2 Способы продления срока службы трансформаторного масла

Ситуационная задача

Провести выбор автоматического выключателя для подключения двигателя по схеме показанной на рисунке 23

Напряжение питания сети $U_{\pi} = 380B$, мощность электродвигателя $P_{\pi} = 2.2$ кВт., $cos\phi = 0.87$, КПД двигателя $\eta = 0.83$, кратность пускового тока $k_i = 6.5$.

Зав. кафедрой		Ст. преподаватель кафедры	
ЭО и ЭТ в АПК	Вендин С.В.	ЭО и ЭТ в АПК	Килин С.В.

ФГБОУ ВО «Белгородский государственныйаграрный университет им. В.Я.Горина»		
Факультет среднего	Кафедра электрооборудования	
профессионального образования	и электротехнологий в АПК	
Семестр 8	Kypc 4	
2 7 2 2 2 2 2 2 2	•	

ЭКЗАМЕН (КВАЛИФИКАЦИОННЫЙ) БИЛЕТ № 24

Профессиональный модуль 02. Обеспечение электроснабжения сельскохозяйственных предприятий

1 Характеристика кабельных сооружений

2 Профилактические мероприятия по повышению надёжности кабельных линий

Ситуационная задача

Провести выбор нереверсивного магнитного пускателя для подключения двигателя по схеме по-казанной на рисунке 24

Напряжение питания сети $U_{\rm J}=380{\rm B}$, мощность электродвигателя $P_{\rm H}=2,2~{\rm kBr.}$, $\cos\phi=0.87,~{\rm K\Pi}{\rm Д}$ двигателя $\eta=0.83,~{\rm kpathocth}$ пускового тока $k_{\rm i}=6.5.$

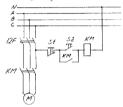


Рисунок 24

 Зав. кафедрой
 Ст. преподаватель кафедры

 ЭО и ЭТ в АПК
 Вендин С.В.
 ЭО и ЭТ в АПК
 Килин С.В.

Критерии оценки на квалификационном экзамене по ПМ.02:

- «освоен» за овладение содержанием учебного материала, в котором студент ориентируется; научно-понятийным аппаратом; за умение практически применять теоретические знания, высказывать и обосновывать свои суждения. При этом выполнено не менее 80 % задания по освоению всех профессиональных компетенций по всем контролируемым показателям;
- «не освоен» если студент имеет разрозненные, бессистемные знания, допускает ошибки в определении базовых понятий, искажает их смысл; не может практически применять теоретические знания. При этом выполнено менее 80 % задания по освоению хотя бы одной из профессиональных компетенций.